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Near-critical confined fluids and Ising films: Density-matrix renormalization-group study
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Two-dimensional Ising strips subject to identical surface fieldsh15h2>0 are studied for temperatures
above and below the bulk critical temperatureTc and a range of bulk fieldsh by means of the density-matrix
renormalization-group method. In the case of nonvanishing surface fields, the near-critical behavior of the
solvation forcef solv , total adsorptionG, inverse longitudinal correlation lengthj i

21 and specific heatCH is
strongly influenced by the~pseudo! capillary condensation that occurs belowTc . We obtain scaling functions
of f solv , G, andj i

21 . CH exhibits a weakly rounded singularity on crossing the pseudocoexistence line. We
contrast these results with those for the case of free boundaries where, for temperatures slightly belowTc , f solv

andCH exhibit a sharp extremum away fromh50. Our results have direct repercussions for the properties of
near-critical Ising films in three dimensions and we argue that the long-ranged solvation~Casimir! force in
confined fluids should be more attractive in the neighborhood of the capillary critical point than exactly at the
bulk critical point.
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I. INTRODUCTION

When simple fluids are confined between parallel s
strates or walls their properties may differ dramatically fro
those in bulk. Understanding the influence of confinemen
the phase behavior of the fluid is relevant for fluids in poro
solids and for experiments performed with the surface fo
apparatus@1,2#. The properties of the confined fluid ne
bulk criticality are particularly rich since the combined e
fects of finite-size and specific wall-fluid interactions have
profound effect on critical behavior. Scaling analysis impl
that finite-size effects will shift the critical temperature an
depending on boundary conditions, lead to rounding of cr
cal singularities@3,4#. Surface effects may induce a shift
the critical chemical potentialm @5# and introduce nonunifor-
mity of the local order parameter which entails surface cr
cal exponents; the theory of surface critical phenomena
dicts fundamentally different universality classes depend
on the type of surface@5–7#. One of the challenges for th
theory of confined fluids near bulk criticality is to understa
the interplay between the various phenomena that arise in
critical region and this is the subject of the present pape

When the confining walls attract the atoms of the flu
the phenomenon of capillary condensation@1,2# occurs at
temperaturesT below the bulk critical temperatureTc
whereby the bulk first-order phase transition is displaced
the (T,m) plane: condensation of the gas to liquid occurs
a value ofm smaller than in bulk. On the other hand, at t
bulk critical point, the critical Casimir effect arises@8#.
Finite-size contributions to the free energy of a fluid confin
between two parallel walls, separated by a distanceL, give
rise to a force per unit area between the walls, or an exc
pressure, termed the solvation forcef solv @1#. The detailed
form of f solv depends on the bulk state point and the wa
fluid potentials, as well as onL. At the critical point, f solv
becomes long ranged as a result of critical fluctuations@9#, a
phenomenon that is analogous to the well-known Casi
1063-651X/2001/64~5!/056137~13!/$20.00 64 0561
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effect in electromagnetism@10#. Here, we are concerned wit
properties of the confined fluid and, in particular, the solv
tion force for temperatures between the bulk critical tempe
ture Tc and the shifted or capillary critical temperatu
TcL(,Tc) which denotes the end of the capillary conden
tion line. For largeL, the two different critical points are
located close to each other in the (T,m) plane and we find
capillary condensation has a very strong influence on
near-critical solvation~Casimir! force and on other thermo
dynamic properties.

Treated separately, the two phenomena have rece
much attention. The theory of capillary condensation is w
developed@1,5,11,12# and the predicted behavior off solv ,
which jumps discontinuously, and other quantities at t
transition has been confirmed in computer simulations an
experiments@1,2#. The critical Casimir effect has attracte
much recent interest due to the universal character of
phenomenon. The existence of the long-ranged critical
simir force should be common to all systems characteri
by fluctuating quantities with external constraints@8#. Al-
though unambiguous experimental verification of the eff
is beset with difficulties@8,13#, some recent experiments d
provide evidence for its existence@14#. One of the sources o
experimental difficulty is that the predicted leading powe
law decay of the Casimir force at bulk criticality,f solv(L)
;kBTcA12(d21)L2d asL→`, is for ~bulk! spatial dimen-
sion d53, of the same form as the solvation force arisi
from dispersion forces and for many experimental situatio
the amplitude may be much smaller than the correspond
Hamaker constant@8,15#. Considerable effort has been spe
in calculating the values of the Casimir amplitudeA12 for
different boundary conditions@8,15#. A12 is a universal num-
ber for 2<d<d. , where the upper critical dimensiond.

54 for the Ising universality class. The value ofA12 depends
on the type of boundary conditions imposed on the t
walls: 1 refers toz51 and 2 toz5L. For experiments on
pure fluids or binary mixtures, the most relevant situation
©2001 The American Physical Society37-1
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when the walls exert surface fields on the atoms of a flu
i.e., symmetry-breaking boundary conditions. In the case
identical walls andd53, the Casimir amplitude is estimate
to be A11[A11;20.35 from Monte Carlo simulations
@16#, whereas a recent local functional treatment yield
value of20.428@17#. Since fluctuations in bulk fluids are o
the largest extent exactly at the critical point, one may exp
that the effect of the external constraints, such as confin
walls, should also be largest exactly at the critical po
However, knowledge of the solvation force slightly aw
from the the bulk critical point and, in particular, at therm
dynamic states lying between the capillary critical point a
the bulk critical point is very limited. It is, of course, muc
more difficult to develop a theory of the crossover regim
since it is not cleara priori which degrees of freedom ar
irrelevant, and it is not obvious which simplifying assum
tions can be made. Given that there are no reliable gen
predictions, it is most valuable to have accurate results f
model system.

Here we exploit the mapping between fluids and the Is
model and consider Ising spin systems subject to ident
surface fieldsh15h2>0. The bulk magnetic fieldh corre-
sponds to the chemical-potential differencem2msat . Sche-
matic phase diagrams are shown in Fig. 1. Mean-field res
are available for the temperature dependence of the solva
force ath50 or, equivalently, for the scaling functionW11

@16–18#, defined byf solv /kBTc[L2dW11(L/jb) wherejb
is the bulk correlation length. The solvation force has a sh
low minimum aboveTc that occurs forL;3.7jb . Local
functional results ford53 from Borjan and Upton@17# yield
a more pronounced minimum inW11 at L;3.1jb . In d
52, W11 was determined by exact transfer-matrix metho
@19#. Once again there is a minimum aboveTc , now at L
;2.23jb , with an amplitude that is 6.6 times the Casim
valueW11(0)5A11(d21).

For h15h2.0, the lineh50 lies in the liquid or spin up
(1) phase away from the line of capillary condensation
hco(T)—see Fig. 1~a!. Since we are primarily interested i
the behavior off solv in the neighborhood ofhco(T) and in

FIG. 1. Schematic temperature—bulk magnetic field (T,h)
phase diagrams for an Ising system subject to identical sur
fields h15h2 and a fixed~large! surface separationL. In ~a! h1

5h2@0 and capillary condensation of the (1) spin-up phase oc-
curs along the solid linehco(T),0. This line ends in the capillary
critical point (TcL ,hcL) ~circle! with TcL,Tc , the bulk critical
temperature, andhcL,0. In ~b!, h15h250 ~free boundaries! and
the bulk Ising symmetry is preserved, i.e., coexistence occurs a
the solid lineh50 up to the temperatureTcL,Tc . In the two-
dimensional Ising strip, the coexistence lines become lines
pseudocoexistence, i.e., the first-order transitions are very we
rounded.
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the region between the capillary and bulk critical points,
require a technique that is tractable forhÞ0 and for large
surface separationsL so that we may enter the appropria
scaling regimes. For two-dimensional lattices~strips! the re-
cently developed density-matrix renormalization-gro
~DMRG! method@20# provides a systematic and very acc
rate means of calculating the solvation force and other pr
erties in nonvanishing bulk magnetic fieldh for a wide range
of temperatures and for large strip widthsL. Results obtained
at T5Tc show thatf solv has a pronounced minimum at som
value h,0, which corresponds roughly to the continuatio
of the capillary condensation line to the critical temperatu
@21#. The amplitude of the scaling function at the minimu
is about 100 times the Casimir value. This observat
prompted us to perform a detailed study of the solvat
force for several temperatures above and belowTc . We find
that a small bulk fieldh,0, which favors gas, or the (2)
phase, results in a solvation force that is much more att
tive ~at the same large value ofL) than the Casimir value
We attribute the strong attraction to the residual effects
capillary condensation. This finding has repercussions
experimental studies that aim to measure the Casimir fo
e.g., by atomic force microscopy or surface force appara
Some of our results were reported in a Letter@22#. The pur-
pose of this paper is to present the results forf solv in more
detail by extending the analysis to the scaling behavior
to consider other properties that exhibit features reflect
those found inf solv . We also examine various criteria fo
determining the coexistence line for capillary condensati
Recall that although there is no longer any true phase t
sition for finiteL, in Ising strips ind52 there is still a line of
extremely weakly rounded first-order transitions ending a
pseudocritical point@23–26#. In Ref.@22#, we determined the
pseudocoexistence linehco(T) and gave an estimate for th
pseudocritical temperatureTcL on the basis of the behavio
of f solv , the adsorption~total magnetization! G, and the lon-
gitudinal correlation lengthj i . In this paper, we also calcu
late the specific heatCH . The form ofCH on crossing the
capillary condensation line does not appear to have been
vestigated previously. We consider paths at:~a! constant
temperature, and~b! constant fieldh, crossing the capillary
condensation line. Along both paths, the specific heat de
ops a ~weakly rounded! singularity since the symmetry
breaking surface fields lead to a pseudocoexistence
hco(T) with nonzero slope, and hence, a latent heat tha
inversely proportional toL. Finally, we study the case of fre
boundariesh15h250 and inquire whether there are any m
jor differences in the behavior of the various properties
tween this case andh15h2@0. As exact results are availabl
along the line of pseudocoexistenceh50 @see Fig. 1~b!#,
these serve as a valuable test for the accuracy of the DM
method.

Our paper is organized as follows. Section II defines
model and summarizes its phase behavior. Section III
scribes briefly the DMRG technique and presents our res
for strong surface fields. In Sec. IV, we present results
h15h250. We conclude in Sec. V with a discussion a
summary.
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II. THE MODEL AND ITS PHASE BEHAVIOR

The system we consider is an Ising spin system in s
geometry subject to identical surface fields. Our DMRG
sults refer to thed52 Ising strip defined on the square lattic
of sizeL3M , M→`. The lattice consists ofL parallel rows
at spacinga[1, so that the width of the film isLa5L. At
each site, labeledi , j , . . . , there is an Ising spin variabl
taking the values i561. We assume nearest-neighbor inte
actions of strengthJ and a Hamiltonian of the form

H52JF (
^ i , j &

s is j1h(
i

s i1h1(
i

(1)

s i1h2(
i

(L)

s i G , ~1!

where the first sum runs over all nearest-neighbor pairs
sites, while the last two sums run, respectively, over the fi
and theLth row. h is the reduced bulk magnetic field andh1
and h2 are reduced surface fields corresponding to dir
~‘‘contact’’ ! interactions between the surfaces and the sp
in the film. We assume thath1[h2>0. The generalization
of Eq. ~1! to d53 is immediate.

For an Ising film that is of infinite extent ind21 dimen-
sions parallel to the surfaces true two-phase coexistence
occur providedd21>2—the lower critical dimension of the
corresponding bulk system. Criticality for finiteL then lies in
the universality class of the bulkd21 system. The location
of the critical point in the bulk field, temperature (h,T) plane
depends on the choice of surface field:

~a! h15h2.0. In this case, the phenomenon equivalen
capillary condensation takes place when the bulk magn
field h,0 favors the negatively magnetized phase, wher
the surface fieldsh1 ,h2 favor the positively magnetized
phase. For largeL, two-phase coexistence occurs along a l
hco(T) which is given approximately by the analog of th
Kelvin equation

2hco~T!'s~T!/Lm* ~T!, ~2!

wheres(T) is the interfacial tension between the coexisti
bulk (1) and (2) phases andm* (T).0 is the bulk spon-
taneous magnetization.@A brief derivation of Eq.~2! is given
in Sec. III.# The presence of thick wetting films of1 spin at
the two surfaces in the (2) phase gives rise to nontrivia
corrections that shift the condensation line to larger value
uhu @1#, nevertheless, the Kelvin equation does predict
correct qualitative behavior of the condensation line at l
temperatures. The two-phase coexistence ends in a~capil-
lary! critical point (hcL ,TcL) whereTcL(h1) lies below the
temperature of the bulk critical pointTc—see Fig. 1~a!. The
expression for the critical temperature shift@5# is given by

@TcL~h1!2Tc#/Tc'2L21/nXc~h1LD1 /n!, ~3!

whereXc(w) is a scaling function. A similar form holds fo
Dhc[hcL(h1) @5#

Dhc'2L2D/nYc~h1LD1 /n!, ~4!
05613
b
-

-

of
st

t
s

ay

o
ic
s

e

of
e

whereYc(w) is another scaling function.D1 is the surface
gap exponent,D is the bulk gap exponent, andn is the bulk
correlation length exponent.

~b! h15h250. In films with free boundaries, the Isin
symmetry dictates that two-phase coexistence must beh
50. Thus, ford>3 and large but finiteL, the line of coex-
istence remains ath50 but ends at the critical temperatu
TcL,Tc given by Eq.~3! with Xc(0)5const—see Fig. 1~b!.

In d52 Ising films. the situation is slightly different. A
mentioned earlier, there is no true phase transition for fin
L, i.e., no nonanalytic behavior of the free energy. Deriv
tives of the free energy are rounded, giving rise to extre
rather than singularities. However, the rounding inh or in T
is extremely small for largeL, namely of the order of
L23/2exp@2Ls(T)/kBT# @23#, so that thepseudofirst-order
transition remains very sharp and may be located by sim
tion @25# or, indeed, by DMRG@26#. For the d52 Ising
model, the surface tensions(T) is given exactly by

s~T!52kBT~K2K* !, ~5!

whereK5J/kBT andK* satisfies sinh(2K)sinh(2K* )51 @27#
and the critical exponents aren51, D515/8, andD151/2
@7#. For sufficiently largeL, we expect the scaling results~3!
and~4! to remain valid ind52, provided, of course, there i
some way of locating the pseudocapillary critical point.

III. DMRG RESULTS FOR STRONG SURFACE FIELDS
h1Äh2š0

The DMRG is a technique based on the transfer-ma
approach@20#. It provides an efficient algorithm for con
structing the effective transfer matrix for large systems;
effective transfer matrix is then diagonalized numerical
We have used the finite-system version of the DMRG al
rithm designed to perform very accurate calculations
finite-size systems@28,29#. As emphasized earlier, th
DMRG works equally well forhÞ0, where no exact solu
tions are available, as forh50 @21,22#. The total free energy
f per site is obtained from the largest eigenvalueL0 of the
effective transfer matrix

b f ~L,T,h,h1!52
1

L
ln L0 , ~6!

whereb5(kBT)21.

A. Solvation force

The total free energy per site of thed52 Ising film with
surface fieldsh15h2 may be written as

f ~L,T,h,h1!5 f b~T,h!12 f w~T,h,h1!/L1 f * ~L,T,h,h1!/L,
~7!

where f b is the bulk free energy,f w is the L-independent
surface excess free-energy contribution from each surf
and f * is the finite-size contribution to the free energy. A
energies are measured in units ofJ and the temperature in
7-3
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units ofJ/kB . f * , which vanishes forL→`, gives rise to the
generalized force, which is analogous to the solvation fo
between the walls in the case of confined fluids@1#,

f solv52~] f * /]L !T,h,h1
. ~8!

For Ising systems with identical surface fields, the solvat
force is attractive, i.e.,f solv,0.

From the general theory of critical finite-size scaling@3#,
it follows that near bulk criticality the solvation force fo
identical surface fields should take the following scali
form ~ignoring nonuniversal metric factors!:

f solv /kBTc5L2dW~Ltn,Luhun/D,Lh1
n/D1!, ~9!

whereW is a universal scaling function,t[(T2Tc)/Tc , and
n, D, andD1 are the critical exponents introduced earlier.
mentioned in the Introduction, at fixed points of th
renormalization-group transformationt50, h50, h150 ~or
h15`) the leading-order decay of the solvation force forL
→` is algebraic since the scaling function reduces
W(0,0,0)5A0(d21) or W(0,0,̀ )5A`(d21). A0 andA`

are the universal Casimir amplitudes. For thed52 Ising
modelA`5A052p/48 @30#.

In order to obtain the solvation force and its scaling fun
tions, we first calculate the excess free energy per
‘‘area’’

f ex~L ![~ f 2 f b!L. ~10!

The bulk free energy per spinf b is known exactly only for
h50 @27#. For nonzero bulk field we evaluatef b numeri-
cally. We calculate the largest eigenvalue for finite syste
~strips! with free boundary conditions and widthsL ranging
from 30 to 300. We then extrapolate toL→` using the
Bulirsch and Stoer method@31# and obtain the value off b for
each state point (T,h). Such an extrapolation is guarante
to be of high accuracy provided the ratio between the wi
of the largest stripLmax and the bulk correlation lengthjb , is
much greater than unity; the smallerLmax/jb, the less accu-
rate are the extrapolated values. Special tests were perfo
at T5Tc where the ratio becomes small@21#. Of course, it is
necessary to obtain a very accurate bulk free energy in o
to obtain an accuratef ex(L) and, hence, a reliable solvatio
force. By calculatingf ex(L) at L012 and L0 we obtain
f solv52] f ex(L)/]L by a finite difference.

Calculations were performed for films of widthL5100,
150, and 200 at several fixed temperatures above and b
Tc . h1 was chosen separately for eachL so that the scaling
variablex[Lh1

n/D1(5Lh1
2 in d52)520 000, which is suf-

ficient to ensure each system corresponds to the infinite
face field scaling limit@21#. Examples off solv as a function
of h for fixed L5200 and various fixed temperatures we
given in Fig. 1 of Ref. @22#. Here, in Fig. 2, we plot
L2f solv /kBTc5W(z,y,x) as a function of y
[Luhun/D(5Luhu8/15 in d52) for fixedx520 000 and sev-
eral fixed values ofz[Ltn(5Lt in d52). For the lowest
temperatures considered here, corresponding to the sc
variable z equal to220 and210, we find a very weakly
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rounded jump of the solvation force from zero to a negat
value asy is reduced@see Fig. 2~a!#. In the vicinity of the
jumps the scaling is not well obeyed. We can understand
by recalling that a discontinous jump is a characteristic s
nature of the solvation force at a first-order capillary cond
sation phase transition@1,11#. At fixed large L and fixed
temperatureT,TcL , f solv should change abruptly from val
ues appropriate to a spin down (2) ~gas! phase

f solv
2 '0, ~11!

to negative values appropriate to a spin up (1) ~liquid!
phase

f solv
1 '@m2msat~T!#~r l2rg!, ~12!

upon increasing the chemical potentialm @12#. Here,msat(T)
is the chemical potential at bulk two-phase coexistence
r l andrg are the coexisting densities of bulk liquid and ga

FIG. 2. Dimensionless scaling function of the solvation for
W11(y)[W(z,y,x)5L2f solv /kBTc calculated for two-
dimensional Ising strips of widthL570 ~asterisks!, 100 ~circles!,
150 ~diamonds!, and 200 ~squares! plotted as a function ofy
5Luhu8/15 at fixedx5Lh1

2520 000 and several choices of the sca
ing variablez5Lt. In ~a! for z5220, 210, the sharp jumps to a
strongly attractive solvation force asy is reduced denote capillary
condensation of the (1) phase; scaling is not well obeyed. In~b!
z521.26, 20.05, 0.95, the solvation force exhibits a minimu
and the scaling is very well obeyed.
7-4
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respectively. This result is obtained, in magnetic langua
from the following~macroscopic! approximation for the tota
free energy of the two confined phases:

f 6' f b
6~T,h!1

2

L
f w

6~T,h,h1!, ~13!

where6 denotes the two phases andf w
6 denotes the surfac

excess free energy for the wall-spin up/down phase. S
this approximation ignores interactions between surface
is valid for L→`. We find that in the (2) phase

f ex
2 '2 f w

2~T,h,h1!, ~14!

which is independent ofL so that Eq.~11! follows, while in
the (1) phase

f ex
1 ~L !'L@ f b

1~T,h!2 f b
2~T,h!#12 f w

1~T,h,h1!. ~15!

Expanding the bulk free energy to first order inh

f b
6~T,h!' f b

6~T,0!7hm* ~T!, ~16!

wherem* (T).0 is the bulk spontaneous magnetization,
find

f ex
1 ~L !'22Lhm* ~T!12 f w

1~T,h,h1!. ~17!

Recall that forh,0, the (2) phase is stable in bulk so th
first term in Eq.~17! reflects the fact that the (1) phase
would be metastable in bulk. The resulting solvation forc
2] f ex(L)/]L is

f solv
1 '2hm* ~T!, ~18!

which is equivalent to Eq.~12! since 2m* (T) corresponds to
(r l2rg) and h to @m2msat(T)#. The calculated gradient
(] f solv

1 /]h)T for z<210 agree with the known values o
2m* (T) to a relative accuracy 1024 @22#.

Coexistence occurs, ath5hco(T), when f 15 f 2. We es-
timatehco(T) by expanding the surface excess free energ
f w

6 about their values at bulk coexistence (h50), i.e., about
sw

6(T,h1). To first order inh

f w
6~T,h,h1!'sw

6~T,h1!2hms
6 , ~19!

wherems
652(] f w

6/]h)T,h1
is the surface excess magnetiz

tion evaluated close to capillary condensation. It follows t

2hco~T!'
sw

2~T,h1!2sw
1~T,h1!

Lm* ~T!2~ms
22ms

1!
, ~20!

which is equivalent to results given in Refs.@12,26#. For the
strong surface fieldsh1 considered here, a single wall is a
ways wet completely by (1) phase so thatsw

2(T,h1)
5sw

1(T,h1)1s(T), where s(T) is the interfacial tension
between (1) and (2) phases, and to leading order in 1/L,
Eq. ~20! reduces to the Kelvin equation~2!. For largeL,
uhco(T)u is small and thick wetting films of (1) phase de-
velop at the surfaces~walls!. Then, ms

2'2lm* (T), where
05613
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l (T,h) is the film thickness. By contrast,ms
1'0 and Eq.

~20! may be rewritten for the complete wetting situation a

2hco~T!'
s~T!

m* ~T!@L22l ~T,hco!#
, ~21!

which is the standard modification to the Kelvin equatio
valid for short-ranged forces@1,11#. In d52 however, fluc-
tuations of the wetting films give rise to an additional co
tribution to the free energy and (L22l ) in the denominator
of Eq. ~21! should be replaced by (L23l ) @32#.

Using the Kelvin equation~2! for hco(T), it follows that
the jump in the solvation force is given by

D f solv[ f solv
1 2 f solv

2 '2hco~T!m* ~T!'22s~T!/L,
~22!

i.e., the magnitude of the jump should decrease in the s
fashion as the interfacial tension asT increases at fixedL.
Our numerical DMRG results agree with this prediction f
low temperatures indicating thatf solv displays the features o
‘‘classical’’ capillary condensation, albeit weakly rounde
in this d52 model.

For higher temperatures such thatz[Lt.210, the sol-
vation force changes its behavior significantly. Asz in-
creases, the jump off solv gradually transforms into a mini
mum and plots ofL2f solv versusy[Luhu8/15, obtained for
different L, begin to lie closer to a common curve. Atz
521.26, the scaling is very good@see Fig. 2~b!#. We con-
firmed that the scaling also holds aboveTc . Moreover, the
shape of the scaling functionW11(y)[W(z0 ,y,20 000) for
z050.95 is similar to that belowTc ; the depth of the mini-
mum of the scaling function decreases and its position mo
monotonically towardsy50 as z0 increases. Finally, we
checked that forz0'0 , as well as forz0,0, W11(y) varies
as '2y1/2 for y→0; see also Figs. 8 and 9 in Ref.@21#
which refer toz0[0. This implies, via Eq.~9!, that the sol-
vation force is a linear function ofh for smallh and fixedL.
Such a result is, of course, predicted by Eq.~18! for T
,Tc . That it is valid very close toTc is more surprising and
indicates some residual effect of the metastable bulk~con-
densing! phase.

B. Total adsorption

We have calculated the total adsorptionG, defined as

G5(
l 51

L

ml , ~23!

since this quantity also provides an important signature
the first-order phase transition.G exhibits a discontinuous
jump at capillary condensation from negative values char
teristic of a (2) phase, with wetting films of1 spins, to
positive values characteristic of a (1) phase condensing be
tween the two surfaces.ml[^s l& is the magnetization in row
l. It is straightforward to show using the approximatio
given earlier andG52L(] f /]h)L,T,h1

, that the jump in ad-
sorption
7-5
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DG[G12G2'2m* ~T!@L22l ~T,hco!#, ~24!

where, as in Eq.~21!, l (T,hco) is the thickness of a wetting
film at capillary coexistence. Plots ofG versus h for L
5200 exhibit jumps at low temperature~see Fig. 2 of Ref.
@22#! which are consistent with this simple formula. Here,
Fig. 3, we plot the scaling function of the adsorptio
G11(y) defined by@21#

G5uhu(b2n)/DG11~y![uhu(b2n)/DG~z,y,20 000!,
~25!

with (b2n)/D527/15 ind52, evaluated at the same fixe
value x5Lh1

2520 000 and the same values of the scal
variablez5Lt as for the solvation force. As in Fig. 2, for th
two lowest values ofz, we find very weakly rounded jump
of G11(y) and significant deviations from scaling. Note th
the jumps occur at the same values ofy as those inW11(y).
Closer to the bulk critical point the scaling becom

FIG. 3. Dimensionless scaling function of the total adsorpt
G11(y)5G(z,y,z)5Guhu7/15 plotted as a function ofy5Luhu8/15

for the same systems and the same choice of scaling variabx
520 000 and variousz5Lt as in Fig. 2. The jumps in~a! occur at
the same values ofy as those in Fig. 2 and are associated w
capillary condensation of the (1) phase~positive adsorption! asy is
reduced. In~b! the adsorption exhibits a maximum and scaling
very well obeyed.
05613
t

excellent—see Fig. 3~b!. Note that forz'0, G11(y) still
exhibits a steep increase asy decreases indicating some r
sidual condensation.

C. Longitudinal correlation length

An important quantity that arises in strip geometry is t
longitudinal spin-spin correlation lengthj i , which may be
expressed in terms of the ratio of the largestL0 and second
largestL1 eigenvalues of the transfer matrix

j i
21~L,T,h,h1!52 ln@L1 /L0#. ~26!

In the case ofperiodic boundary conditions, the two larges
eigenvalues of the transfer matrix are asymptotically deg
erate at pseudocoexistenceh50, T,Tc , andj i

21→0 asL
→`. More generally, one knows that the dominant spin co
figurations of a system at pseudocoexistence involve suc
sive domains of (1) and (2) magnetization of a character
istic lengthj i separated by domain walls that reach acro
the strip andj i is related to the interfacial tensions(T) via

j i;exp@Ls~T!/kBT#, ~27!

where we ignore prefactors, i.e.j i
21 is exponentially small as

L→` @23#. For small uhu ~but outside the avoided leve
crossing region! and largeL, the inverse correlation length i
given by @33#

j i
2152m* ~T!uhuL/kBT. ~28!

This formula follows from the fact that for smalluhu and
large L the so-called ‘‘free-energy levels’’f 0(h,T;L)
[2(kBT/L)ln L0 and f 1[2(kBT/L)ln L1 are linear func-
tions of h with slopes given by 2m* sgn(h) and
1m* sgn(h), respectively. Note, that in the limitL→`,
f 0(h,T;L) reduces to the bulk free energy per site.

Little is known aboutj i in the present case of broke
symmetry,h15h2.0. We calculate this quantity for a stri
of width L5200 as a function ofh for a series of tempera
tures ~see Fig. 4!. At reduced temperatures,t520.1011,
20.0546, and20.0505, where the solvation force and th
adsorption behave in a way characteristic of capillary c
densation,j i

21 has a sharp minimum at somehmin(T),0
with j i

21(hmin)'0 indicating asymptotic degeneracy ofL0

andL1. We identifyhmin(T) with a point of pseudocoexist
ence noting that the values ofhmin(T) lie very close to those
whereG and f solv jump—see Figs. 1 and 2 of Ref.@22#. In
the close neighborhood of its minimum,j i

21 is symmetric
and increases linearly inuh2hmin(T)u.However, the slope is
slightly less than that given by Eq.~28! since the slope off 1
as a function ofh appears to be smaller thanm* (T). Outside
a rather narrow linear region, the variation of the correlat
length with h reflects the asymmetry of our system. Forh
.hmin , j i

21 continues to increase almost linearly, while f
h,hmin , the increase inj i

21 is much slower. As the tem
perature increases, the minimum ofj i

21 gradually lifts away
from zero and becomes more shallow. Whether these
7-6
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tures may be accounted for by extending the bubble mode
Ref. @33# remains to be investigated.

D. Pseudocoexistence line

In Fig. 5, we present the lineh0(T) defined by the
maxima of the total free-energyf or, equivalently, by the
zeros of the total adsorptionG, for a strip of fixed widthL
5200. In the same figure, we also plot inflection points
the rounded jump off solv and the minima,hmin(T), of the

FIG. 4. Inverse longitudinal correlation length~in units of lattice
spacing! as a function of the bulk magnetic fieldh ~in units ofJ) for
an Ising strip of fixed widthL5200, surface fieldsh15h2510, and
several reduced temperaturest[(T2Tc)/Tc . At the three lowest
temperatures, there is a sharp minimum, withj i

21'0, which cor-
responds to pseudocoexistence.

FIG. 5. Maximah0(T) of the free energy~or zeros of the ad-
sorptionG) ~solid line!, inflection points off solv ~squares!, minima
of j i

21 ~circles!, and maxima of the specific heatCH ~asterisks! as
functions of the bulk magnetic fieldh ~in units of J) calculated at
fixed temperatureT ~in units of J/kB) for the same system (L
5200, h15h2510) as in Fig. 4. The bulk critical temperatureTc

'2.269 185 (t50) is denoted by the horizontal line. Pseudocoe
istence between (2) and (1) phases occurs alongh0(T) for T
&2.16 ~see text!.
05613
of

f

inverse correlation lengthj i
21 . At low T, these two sets of

characteristic points lie on the lineh0(T). For higherT, the
curves separate since in the bulk critical region, the beha
of G, f solv , andj i reflect different features of criticality. The
locus of h0(T) moves to largeruhu for T.Tc , as does the
locus of inflection points, whereashmin(T) moves towards
h50. Thus, for sufficiently lowT, it is natural to identify
h0(T) with the pseudocoexistence linehco(T). Determining
the pseudocritical temperatureTcL is more difficult since the
critical point is not sharp in this quasi-one-dimensional s
tem and we must examine various criteria in order to e
mateTcL . The erosion of the jumps in the adsorption and t
solvation force takes place forT between 2.155 and 2.160
Another criterion concerns the behavior of the minimum
j i

21 , which for T between 2.16 and 2.17, lifts away from
zero indicating crossover from exponential decay ofj i

21

with L, characteristic of pseudocoexistence, to a differ
type of L dependence. The variation of the magnetizat
profiles with temperature near the lineh0(T) provides a fur-
ther signature of pseudocoexistence. In Fig. 6, we pres
data for the evolution of the magnetization profile as a fu
tion of temperatureT at two fixed values of the bulk fieldh.
For h520.002 677, the profile jumps abruptly on crossi
the lineh0(T). On the lowT side (1) phase, the profileml
is constant and'm* (T), except very close to the surface
while on the highT side (2) phaseml'2m* (T) in the
central region and there are wetting films of1 spin at the
surfaces. By contrast, forh520.001 493, the profiles
change continuously asT increases, which implies that th
pseudocritical temperatureTcL must lie below 2.18. Yet an-

-

FIG. 6. Variation of the magnetization profileml with the tem-
perature at fixed bulk magnetic fieldh ~in units of J): ~a! h
520.002 677 and~b! h520.001 493 calculated for the same sy
tem as in Figs. 4 and 5, namely,L5200, h15h2510. ml is dimen-
sionless,l is in units of the lattice constant. The top curve in~a!
consists of profiles evaluated atT52.049 974, 2.049 988, 2.049 99
2.050 002, 2.050 012. The bottom profile corresponds toT52.050
026. Profiles in ~b! correspond to~from top to bottom! T52.179
79, 2.179 988, 2.179 994, 2.179 998, 2.18, 2.180 002, 2.180
2.1802. ~a! corresponds to crossing the pseudocoexistence
while ~b! is a ‘‘supercritical’’ situation.
7-7
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other indicator of pseudocoexistence is the specific h
which we discuss in the next subsection.

E. Specific heat

Second derivatives of free energies~response functions!
usually provide key information about the nature of pha
transitions. Although the behavior of the susceptibilityx at a
capillary condensation transition ind52 Ising systems has
been studied in Monte Carlo simulations@34#, the specific
heat CH(L,T,h,h1)[2T(]2f /]T2)L,h,h1

does not seem to
have been investigated@35#. In the bulk Ising system, the
specific heat has quite different behavior from the susce
bility as the phase boundary is crossed by changingh at fixed
T,Tc : x exhibits a delta-function singularity ath50,
whereas Ising symmetry ensures thatCH shows no jump~no
latent heat!.

FIG. 7. Specific heatCH ~in units of kB) calculated ford52
Ising strip of width L5200 with surface fieldsh15h2510 as a
function of h ~in units of J) at fixed temperaturesT52.05, 2.18,
2.2366~in units of J/kBT). Note that the maxima which occur fo
the two lowest temperatures are off the scale of the present fig
05613
t,

e

ti-

For the case of Ising strips ind52 subject to surface
fields h15h2.0, we expect the singularity inx to occur at
capillary condensation, i.e., it should occur on the li
hco(T),0 and be weakly ~exponentially small in L)
rounded. What do we expect forCH near the~pseudo! tran-
sition?

If the broken symmetry, arising from the surface field
modifies the phase diagram to that in Fig. 1~a!, so that
dhco /dT.0, the latent heat should manifest itself either
varying h at fixed T or by varying T at fixed h. In other
words, there is ‘‘field mixing’’ andCH andx should acquire
the same type of weakly rounded singularity. We have c
sen to analyzeCH as this quantity is readily calculable from
the total free energy obtained in DMRG.

Figure 7 showsCH versush for L5200 and three tem-
peratures belowTc : T52.05;2.18;2.2366. For each tem
perature, there is a pronounced maximum at somehmax(T)
,0, which shifts towardsh50 as the temperature increase
At T52.05, the maximum is extremely high and extreme
narrow inh, whereas forT52.18, its height is reduced and
is more rounded, although this is not obvious on the scale
the figure. ForT52.2366, the rounding is clearly apparen
The locus ofhmax(T) is plotted in Fig. 5~asterisks! and lies
on top of h0(T) ~maxima of free energy! until rather high
temperaturesT'2.21 when small deviations occur. On a
proachingTc , the height of the maximum inCH reduces
rapidly and it moves quickly towardsh50. In zero bulk
field, CH takes its maximum value aboveTc at T52.2793,
corresponding to reduced temperaturet50.0045. We should
note that the minimum off solv at h50 is located at a slightly
higher temperatureT52.2835 ort50.006 31 and thatj i

21 at
h50 has its minimum atT52.287, very close to that of
f solv .

In Fig. 8, we plotCH as a function of the temperature fo
the same two values of the bulk fieldh at which the magne-
tization profiles were calculated in Fig. 6, namelyh
520.002 677 andh520.001 493. For both cases, there is
pronounced symmetric maximum. This is very sharp forh

re.
w

re
FIG. 8. Specific heatCH ~in units of kB) cal-
culated for the same system as in Fig. 7 but no
as a function of temperatureT ~in units of J/kB)
at fixed bulk field~a! h520.002 677 and~b! h
520.001 4935. Note the very fine temperatu
scale.
7-8
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520.002 677@Fig. 8~a!# whereas forh520.001 493, it is
much reduced in height and is significantly broadened@Fig.
8~b!#. Such behavior is consistent with the temperature va
tion of the profiles. The smooth variation ofCH in case~b!
reflects the smooth variation of the profiles shown in F
6~b! and confirms thatT52.18 is ‘‘supercritical.’’

The variation ofCH with h is less symmetric than th
variation withT. Close examination of Fig. 7 shows that f
each temperature,CH increases with increasingh up to the
‘‘transition’’ and decreases thereafter. We attempt to und
stand this feature of the results by considering the sim
theory for the free energies of the two ‘‘phases’’ that w
used to describe capillary condensation in Sec. III A. Fr
the approximation~13!, we may obtain the specific heat i
the (2) and (1) phases. Expanding the bulk free ener
@see Eq.~16!# to first order inh we find

CH
2'CHb

2 ~T,0!2~Th!
d2m* ~T!

dT2
2~2T/L !

]2f w
2

]T2
~29!

and

CH
1'CHb

1 ~T,0!1~Th!
d2m* ~T!

dT2
2~2T/L !

]2f w
1

]T2
, ~30!

where CHb
2 (T,0)5CHb

1 (T,0)[CHb(T) is the bulk specific
heat at coexistenceh50. If we also expand the surface e
cess free energyf w

6 as in Eq.~19!, it follows that

CH
2'CHb~T!2Th

d2m* ~T!

dT2 S 12
4l ~T,hco!

L D
1

4Th

L
m* ~T!

]2l ~T,hco!

]T2
2

2T

L

]2sw
2~T,h1!

]T2

~31!

and

CH
1'CHb~T!1~Th!

d2m* ~T!

dT2
2~2T/L !

]2sw
1~T,h1!

]T2
,

~32!

where we have assumed, as previously, thatms
1'0 and

ms
2'2l (T,hco)m* (T), with l (T,hco) the thickness of the

wetting film near capillary condensation. For largeL, we
expect the bulk terms to dominate and noting th
d2m* (T)/dT2,0, it follows that CH should increase lin-
early with h as h→hco

2 (T) and decrease linearly forh
slightly larger thanhco(T), as is found in Fig. 7. The differ-
ence in heat capacity between the two ‘‘phases’’ should
given byCH

12CH
2'2Thco(T)(d2m* (T)/dT2), where, once

again, we have ignored surface contributions.
Of course, this simple treatment was designed for t

capillary condensation as would occur in a three-dimensio
Ising system. It does not describe the weakly rounded sin
larity that occurs in the present two-dimensional syste
05613
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Nevertheless, it does seem to account for the variation ofCH
with h that is observed slightly away fromhco(T).

To complete this section we note that the symme
breaking associated with the surface fields leads to a non
latent heat at the condensation transition, i.e., the entr
difference between the (1) and (2) phases is nonzero—a
one would glean from the magnetization profiles in Fig. 6~a!.
The latent heat is proportional to the slope of the coexiste
curve, which may be estimated from the Kelvin equati
~20!. It should be inversely proportional toL, the width of
the strip.

IV. DMRG RESULTS FOR SURFACE FIELDS h1Äh2Ä0

In this section, we consider the Ising strip with fre
boundaries, i.e., the surface fieldsh15h250. This is the
case whose phase diagram is described in Fig. 1~b!. Now the
Ising symmetryh⇔2h is preserved and~pseudo! coexist-
ence occurs alongh50:hco(T)50. Crossing this line gives
rise to a jump in the total adsorption fromG'2Lm* (T) for
h,0, (2) phase, toG'1Lm* (T) for h.0, (1) phase.
However, unlike the case of nonzero surface fields, ther
no jump in the solvation force and no singularity in the he
capacity. The susceptibilityx does exhibit a weakly rounde
singularity.

If we restrict consideration to bulk fieldh50, it is pos-
sible to obtainexact transfer matrix solutions and we sum
marize some of the main results here. These provide valu
benchmark data against which DMRG may be tested.
then apply the DMRG forhÞ0, where exact solutions ar
not available.

The solvation forcef solv was analyzed by Evans an
Stecki @19#. They showed that the scaling functionW, de-
fined by Eq.~9! has the property, ford52,

W00~2Lt,0,0!5W11~Lt,0,̀ !, ~33!

where subscripts 00 refer toh15h250 and11 to h15h2
5`. This implies that for free boundaries, the solvati
force evaluated ath50, in the scaling limit, has a minimum
at z[Lt521.2642 @19#. In Fig. 9~a!, we plot f solv as a
function of T for L5200,h50 andh15h250 obtained us-
ing the formulas given in Ref.@19# and, for comparison,
results obtained by the DMRG method. The agreemen
excellent.

Exact expressions for the specific heatCH and its scaling
function were derived by Au-Yang and Fisher@36#. CH
evaluated ath50 has its maximum atz[Lt520.8929. In
Fig. 9~b!, we present the DMRG results forCH obtained for
L5200, c.f. Fig. 9~a!. As one can ascertain from the inse
the maximum obtained from the DMRG is at the same va
as that given by the exact result~relative error 1025 or less!.
This gives us confidence in the accuracy of the DMRG te
nique and in our numerical methods for obtainingCH .

The behavior ofj i
21 may also be determined from th

exact diagonalization of the transfer matrix@37#. For largeL
and low temperatures so thatLs(T)/kBT@1, j i

21 is expo-
nentially small inL
7-9
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FIG. 9. ~a! Solvation force~in units ofJ) and
~b! specific heatCH ~in units ofkB) as a function
of the temperatureT ~in units ofJ/kB) at vanish-
ing bulk field h50 for the d52 Ising strip of
width L5200 with free boundary conditions:h1

5h250. In ~a! the circles denote the DMRG re
sults and asterisks the results from the exact
agonalization of the transfer matrix. In~b! the
circles denote the DMRG results and the vertic
dotted line the maximum ofCH given by an exact
calculation:Tmax52.25906. The inset shows, o
an expanded scale, that the DMRG results ha
their maximum at the same position.
-

er
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he
j i
21'2~sinh@s~T!/kBT#/sinh 2K !exp@2Ls~T!/kBT#.

~34!

As T→Tc
2 the surface tension, given by Eq.~5!, vanishes as

s(T)/kBT'24Kct→0, where sinh 2Kc51, i.e., Kc
'0.440 68, and forz'1, Eq. ~34! is no longer valid. In the
regimez[Lt;21/4Kc the form ofj i

21 crosses over to@37#

j i
21's~T!/kBT1p/2L'24Kct1p/2L. ~35!

Figures 10 and 11 show DMRG results forf solv andCH ,
respectively, as a function ofh at several values ofT for L
5200. Both functions are symmetric inh, so we show results

FIG. 10. Solvation forcef solv ~in units ofJ) as a function of the
bulk field h ~in units of J) at several reduced temperaturest[(T
2Tc)/Tc calculated using the DMRG method for thed52 Ising
strip of width L5200 with free boundary conditions:h15h250.
The inset shows the results on an expanded horizontal scale
h50. Note that the minimum value off solv(h50) occurs att
520.0063~triangles!.
05613
for h>0 only. For the two lowest temperatures,f solv is al-
most zero and nearly constant inh. As T increasesf solv(h
50) becomes more attractive andf solv increases monotoni
cally with h. For higher temperatures,f solv develops a sharp
minimum ath.0; this decreases in depth and shifts to larg
values ofh asT increases towardsTc . This trend persists for
T.Tc ; for t50.0063, f solv(h50) is almost zero, but there
is still significant attraction forh.0 with a broad minimum
nearh52.431024.

The results for the specific heat in Fig. 11 exhibit equiv
lent features. At low temperatures,CH decreases monotoni
cally with h, whereas for higher temperatures, a maximu
develops ath.0. At t520.0045, whereCH(h50) takes its
maximum value, the maximum occurs nearh5431025. As

ear

FIG. 11. Specific heatCH ~in units of kB) as a function of the
bulk field h ~in units of J) at several temperatures close to t
critical temperature Tc : t[(T2Tc)/Tc520.0305 ~pluses!,
20.0217 ~crosses!, 20.0126 ~asterisks!, 20.0063 ~triangles!,
20.0045~diamonds!, 0 ~squares!, 0.0063~circles!, calculated using
the DMRG method for thed52 Ising strip of widthL5200 with
free boundary conditions:h15h250. Note that the maximum value
of CH(h50) occurs att520.0045~diamonds!.
7-10
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T is increased further,CH(h50) decreases rapidly, and th
maximum shifts to larger values ofh.

The appearance of two symmetric minima inf solv , at
hmin.0 and2hmin , could have been anticipated on the b
sis of our previous DMRG results forT5Tc(t50) where
the scaling functionW(0,y,0), with y[Luhu8/15, was deter-
mined @21#. That scaling function has its minimum neary
51.12, which corresponds toL;2.9jb , wherejb is the (T
andh dependent! bulk correlation length. Our present resu
show the evolution of the symmetric minima as a function
temperature. It is likely that the position of the minimu
hmin is determined by a criterion such asL;jb for all tem-
peratures in the neighborhood ofTc , but we have not inves
tigated this in detail. We would expect the two symmet
maxima in CH to be determined by a similar criterion bu
with a different numerical prefactor.

Finally, we remark that the temperatures at which the s
cific heatCH(h50) has its maximum and the solvation forc
f solv(h50) has its minimum both lie above what we mig
identify as a pseudocritical temperature. The latter may
estimated very crudely by considering the smallh depen-
dence of the adsorption and ofj i

21 and we find that forL
5200, t520.0126, orT52.23 is already ‘‘supercritical,’’
i.e., there has been crossover into a regime different fr
pseudocoexistence.

V. DISCUSSION

In this paper, we have employed the DMRG technique
investigate various properties of two-dimensional Ising str
of width L subject to identical surface fields. We have co
sidered temperaturesT above and below the bulk critica
temperatureTc and a range of bulk fieldsh. In the case of
nonvanishing surface fields,h15h2.0, the preferential ad-
sorption of (1) spins at each wall leads to a shift of the bu
phase boundary toh,0. This phenomenon of~pseudo! cap-
illary condensation has a profound influence on many pr
erties of the Ising strip, not just at low temperatures wh
the~weakly rounded! condensation transition takes place, b
also for T above the pseudocapillary critical temperatu
TcL , i.e., forT nearTc . The most pronounced features in th
solvation forcef solv , adsorptionG, inverse longitudinal cor-
relation lengthj i

21 , and specific heatCH occur along the
continuation to higherT of the pseudocoexistence line—s
Fig. 5. There is strong variation withT andh. For example,
for L5200 and a reduced temperaturet520.0126, which
lies aboveTc,L , the minimum value of the solvation force
about 300 times the Casimir value, corresponding toh
50,t50.

We confirmed that finite-size scaling is very well obey
for f solv andG ~see Figs. 2 and 3! provided one avoids the
low-temperature, condensation transition. Scaling is equ
well obeyed forj i

21 , although we do not display its scalin
plots here.

The effect of the surface fieldsh15h2.0 is to break the
h⇔2h Ising symmetry so that field mixing occurs. We fin
thatCH exhibits a very weakly rounded singularity on cros
ing the pseudocoexistence line either by increasingh at fixed
05613
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T or by increasingT at fixedh—see Figs. 7 and 8. For highe
temperatures,CH exhibits a very pronounced maximum
which lies close to the extrema calculated for other quanti
until T is very close toTc when deviations occur—see Fig. 5

We also carried out calculations for the case of fr
boundariesh15h250. Since exact results are available f
the particular caseh50, this allowed us to confirm the ac
curacy of the DMRG—see Fig. 9. For free boundaries Is
symmetry is not broken and the various properties exhib
rather different variation withT and h from these obtained
with nonzero surface fields. For temperatures slightly bel
Tc , f solv develops two sharp minima symmetric inh ~Fig.
10!, i.e., the solvation force is more attractive in nonze
field. Similarly, CH develops two symmetric maxima—se
Fig. 11.

Our present results are ford52. We may speculate as t
what might occur in thed53 Ising film with h15h2.0.
Now there is true capillary coexistence along a linehco(T)
ending in a true capillary critical point at (hcL ,TcL). f solv ,
G, andCH should exhibit similar features to those found
d52. Below TcL , f solv will exhibit a discontinuous jump:
D f solv;22s(T)/L @see Eq.~22!# accompanied by a jump
DG;2Lm* (T) in the total adsorption@see Eq.~24!#. On the
critical isothermT5TcL , the jumps are eroded withDG
;(hcL2h)1/d, ash→hcL

2 , whered515 corresponds to the
d52 Ising exponent. For temperatures aboveTcL , f solv and
G should exhibit scaling functions similar to those show
here in Figs. 2 and 3 but with the appropriate scaling va
ablesy5Luhun/D and z5Ltn now determined by thed53
bulk critical exponentsn and D. Moreover, forT,Tc and
small uhu, f solv should still be given by Eq.~18!, i.e., it
should increase linearly withh. Since the gradient is
;2m* (T), it should vanish as (2t)b with b'0.325 in d
53. Such behavior is an important signature of residual c
densation and is found in explicit mean-field results@38# for
a Landau~square-gradient! theory, whereb51/2.

For the d53 film with free boundaries, the solvatio
force and specific heat should exhibit similar behavior to t
shown in d52, i.e., similar to in Figs 9–11. The extrem
may be less pronounced, and will lie at somewhat differ
positions in the phase diagram since the scaling functi
will be different. Nevertheless, we expect the overallT andh
variation to be similar.

Finally, we return to the implications of our results fo
real confined fluids. A pure fluid confined by strongly a
sorbing walls~favoring liquid! should exhibit the same fea
tures as thed53 Ising film with h15h2@0. Thus, capillary
condensation will manifest itself in the same way for flui
as for Ising magnets and this can be analyzed in the s
fashion provided one replaces 2m* (T) by r l2rg , the dif-
ference in coexisting densities of the bulk liquid and g
phases at temperatureT, andh by m2msat(T), the chemical-
potential difference. The critical scaling functions shou
also be equivalent, although one must be cautious abou
choice of scaling variables since field mixing already occ
for a bulk liquid. For a binary liquid mixture that undergoe
bulk liquid-liquid phase separation, there is also the analo
of capillary condensation@2,5,12#. Depending on which spe
7-11
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cies the walls favor, phase separation may be shifted to lo
or higher compositions than in bulk. In such mixtures,
would also expect to find a strongly attractive solvation fo
for temperatures betweenTcL and Tc and for compositions
lying on the condensation side of the bulk critical compo
tion. Our study has shown that the behavior ofnear critical
confined fluids is very rich; it is not just the behavior exac
at the bulk critical point~the critical Casimir effect! which is
of interest. Thus, experiments that aim to measure the
simir force, e.g., by atomic force microscopy or surface fo
apparatus, should also investigate theh andt dependence o
f solv .

Similar remarks apply to measurements of other therm
dynamic quantities@39#. It is the scaling functions that pro
vide the most information—the same point has been mad
Krech and Krech and Dietrich@8,15,16#.

As a last remark, we note that the existence of a lo
.
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ranged, strongly attractive solvation force between two m
roscopic walls has important repercussions for the effec
force between two large~colloidal! particles immersed in a
near-critical fluid or binary liquid mixture. If one can asce
tain wheref solv is most attractive, this should help determin
where aggregation or flocculation of a suspension of
large particles is potentially the strongest. There is a grow
literature on this topic@13,18,40#.
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@22# A. Drzewiński, A. Maciol”ek, and R. Evans, Phys. Rev. Let

85, 3079~2000!.
@23# V. Privman and M.E. Fisher, J. Stat. Phys.33, 385~1983!, and

references therein.
@24# K. Binder, Rep. Prog. Phys.60, 487 ~1997!.
@25# E.V. Albano, K. Binder, and W. Paul, J. Phys. A30, 3285

~1997!.
@26# E. Carlon, A. Drzewin´ski, and J. Rogiers, Phys. Rev. B58,

5070 ~1998!.
@27# L. Onsager, Phys. Rev.65, 117 ~1944!.
@28# S.R. White, Phys. Rev. Lett.69, 2863~1992!.
@29# See, e.g.,Lecture Notes in Physics,edited by I. Peschel, X.

Wang, M. Kaulke, and K. Hallberg~Springer, Berlin, 1999!,
Vol. 528.
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