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Near-critical confined fluids and Ising films: Density-matrix renormalization-group study
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Two-dimensional Ising strips subject to identical surface fidldsh,=0 are studied for temperatures
above and below the bulk critical temperatdieand a range of bulk fields by means of the density-matrix
renormalization-group method. In the case of nonvanishing surface fields, the near-critical behavior of the
solvation forcefs,, , total adsorptior”, inverse longitudinal correlation Iengﬁ”*1 and specific hea€y, is
strongly influenced by th@seudo capillary condensation that occurs bel@w. We obtain scaling functions
of fgo,, I', @and §H*1. Cy exhibits a weakly rounded singularity on crossing the pseudocoexistence line. We
contrast these results with those for the case of free boundaries where, for temperatures slightly. bélgy
andCy exhibit a sharp extremum away from=0. Our results have direct repercussions for the properties of
near-critical Ising films in three dimensions and we argue that the long-ranged sol(@gsimiy force in
confined fluids should be more attractive in the neighborhood of the capillary critical point than exactly at the
bulk critical point.
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[. INTRODUCTION effect in electromagnetisiriO]. Here, we are concerned with
properties of the confined fluid and, in particular, the solva-
When simple fluids are confined between parallel subtion force for temperatures between the bulk critical tempera-
strates or walls their properties may differ dramatically fromture T, and the shifted or capillary critical temperature
those in bulk. Understanding the influence of confinement o (<T,) which denotes the end of the capillary condensa-
the phase behavior of the fluid is relevant for fluids in poroudtion line. For largelL, the two different critical points are
solids and for experiments performed with the surface forcéocated close to each other in th&, ) plane and we find
apparatug1,2]. The properties of the confined fluid near capillary condensation has a very strong influence on the
bulk criticality are particularly rich since the combined ef- near-critical solvatio(Casimip force and on other thermo-
fects of finite-size and specific wall-fluid interactions have adynamic properties.
profound effect on critical behavior. Scaling analysis implies Treated separately, the two phenomena have received
that finite-size effects will shift the critical temperature and, much attention. The theory of capillary condensation is well
depending on boundary conditions, lead to rounding of criti-developed[1,5,11,12 and the predicted behavior df,, ,
cal singularitied3,4]. Surface effects may induce a shift in which jumps discontinuously, and other quantities at this
the critical chemical potentigt [5] and introduce nonunifor- transition has been confirmed in computer simulations and in
mity of the local order parameter which entails surface criti-experimentq 1,2]. The critical Casimir effect has attracted
cal exponents; the theory of surface critical phenomena prenuch recent interest due to the universal character of this
dicts fundamentally different universality classes dependingphenomenon. The existence of the long-ranged critical Ca-
on the type of surfac€5—-7]. One of the challenges for the simir force should be common to all systems characterized
theory of confined fluids near bulk criticality is to understandby fluctuating quantities with external constraing. Al-
the interplay between the various phenomena that arise in thbough unambiguous experimental verification of the effect
critical region and this is the subject of the present paper. is beset with difficultie§8,13], some recent experiments do
When the confining walls attract the atoms of the fluid, provide evidence for its existen€®4]. One of the sources of
the phenomenon of capillary condensatidn2] occurs at experimental difficulty is that the predicted leading power-
temperaturesT below the bulk critical temperaturd, law decay of the Casimir force at bulk criticalitys, (L)
whereby the bulk first-order phase transition is displaced in~kgT A;(d— 1)L~ ¢ asL—os, is for (bulk) spatial dimen-
the (T,u) plane: condensation of the gas to liquid occurs atsion d=3, of the same form as the solvation force arising
a value ofu smaller than in bulk. On the other hand, at thefrom dispersion forces and for many experimental situations
bulk critical point, the critical Casimir effect arisd8].  the amplitude may be much smaller than the corresponding
Finite-size contributions to the free energy of a fluid confinedHamaker constari8,15]. Considerable effort has been spent
between two parallel walls, separated by a distancgive  in calculating the values of the Casimir amplitude, for
rise to a force per unit area between the walls, or an excesdifferent boundary conditions,15]. A, is a universal num-
pressure, termed the solvation fortg,, [1]. The detailed ber for 2<d<d., where the upper critical dimensiah.
form of fg,, depends on the bulk state point and the wall-=4 for the Ising universality class. The valueAf, depends
fluid potentials, as well as oh. At the critical point,fgy, on the type of boundary conditions imposed on the two
becomes long ranged as a result of critical fluctuati®sa  walls: 1 refers toz=1 and 2 toz=L. For experiments on
phenomenon that is analogous to the well-known Casimipure fluids or binary mixtures, the most relevant situation is
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a b the region between the capillary and bulk critical points, we
Te T, require a technique that is tractable fo#0 and for large
surface separations so that we may enter the appropriate
scaling regimes. For two-dimensional lattigssrips the re-
cently developed density-matrix renormalization-group
0 T 0 b (DMRG) method[20] provides a systematic and very accu-
rate means of calculating the solvation force and other prop-
FIG. 1. Schematic temperature—bulk magnetic fiel,h)  erties in nonvanishing bulk magnetic figidfor a wide range
phase diagrams for an Ising system subject t_o identical surfacgs temperatures and for large strip widthsResults obtained
fields h;=h, and a fixed(large surface separatioh. In (@ Ny i1 T show thatf.,, has a pronounced minimum at some
=h,>0 and capillary condensation of the- spin-up phase oc- value h<0, which corresponds roughly to the continuation

curs along the solid lind,(T)<0. This line ends in the capillary fth i d ion i h itical
critical point (T, ,hy) (circle) with T, <T,, the bulk critical of the capillary condensation line to the critical temperature

temperature, anti, <O0. In (b), h;=h,=0 (free boundarigsand [21]. The amplitude of the scaling function at the minimum
the bulk Ising symmetry is preserved, i.e., coexistence occurs alon§ about 100 times the Casimir value. This observation
the solid lineh=0 up to the temperatur&, <T.. In the two-  prompted us to perform a detailed study of the solvation
dimensional Ising strip, the coexistence lines become lines oforce for several temperatures above and belpwWe find
pseudocoexistence, i.e., the first-order transitions are very weaklshat a small bulk fielch<0, which favors gas, or the~)
rounded. phase, results in a solvation force that is much more attrac-
tive (at the same large value &f) than the Casimir value.
when the walls exert surface fields on the atoms of a fluidWe attribute the strong attraction to the residual effects of
i.e., symmetry-breaking boundary conditions. In the case ofapillary condensation. This finding has repercussions for
identical walls andd=3, the Casimir amplitude is estimated experimental studies that aim to measure the Casimir force,
to be A;;=A,,~—0.35 from Monte Carlo simulations e.g., by atomic force microscopy or surface force apparatus.
[16], whereas a recent local functional treatment yields @&ome of our results were reported in a Left22]. The pur-
value of —0.428[17]. Since fluctuations in bulk fluids are of pose of this paper is to present the resultsfigy, in more
the largest extent exactly at the critical point, one may expeatletail by extending the analysis to the scaling behavior and
that the effect of the external constraints, such as confiningp consider other properties that exhibit features reflecting
walls, should also be largest exactly at the critical pointthose found infg,, . We also examine various criteria for
However, knowledge of the solvation force slightly away determining the coexistence line for capillary condensation.
from the the bulk critical point and, in particular, at thermo- Recall that although there is no longer any true phase tran-
dynamic states lying between the capillary critical point andsition for finiteL, in Ising strips ind= 2 there is still a line of
the bulk critical point is very limited. It is, of course, much extremely weakly rounded first-order transitions ending at a
more difficult to develop a theory of the crossover regime,pseudocritical point23—26. In Ref.[22], we determined the
since it is not cleaia priori which degrees of freedom are pseudocoexistence lirg.,(T) and gave an estimate for the
irrelevant, and it is not obvious which simplifying assump- pseudocritical temperaturg,, on the basis of the behavior
tions can be made. Given that there are no reliable generaf ., , the adsorptioritotal magnetizationI”, and the lon-
predictions, it is most valuable to have accurate results for gitudinal correlation lengt; . In this paper, we also calcu-
model system. late the specific heat,,. The form of C,; on crossing the
Here we exploit the mapping between fluids and the Ising:apillary condensation line does not appear to have been in-
model and consider Ising spin systems subject to identicalestigated previously. We consider paths @b constant
surface fieldsh; =h,=0. The bulk magnetic fielth corre-  temperature, antb) constant fieloh, crossing the capillary
sponds to the chemical-potential differenge- us,;. Sche-  condensation line. Along both paths, the specific heat devel-
matic phase diagrams are shown in Fig. 1. Mean-field resultsps a (weakly roundeyl singularity since the symmetry-
are available for the temperature dependence of the solvatidsreaking surface fields lead to a pseudocoexistence line
force ath=0 or, equivalently, for the scaling functioW, , h.o(T) with nonzero slope, and hence, a latent heat that is
[16-18, defined byf,, /kgTe=L "W, . (L/&,) whereé&, inversely proportional t&. Finally, we study the case of free
is the bulk correlation length. The solvation force has a shalboundarie$, =h,=0 and inquire whether there are any ma-
low minimum aboveT, that occurs forL~3.7¢,. Local jor differences in the behavior of the various properties be-
functional results fod=3 from Borjan and Uptofil7] yield  tween this case artth=h,>0. As exact results are available
a more pronounced minimum W, , at L~3.1£,. Ind along the line of pseudocoexistenbe=0 [see Fig. 1b)],
=2, W, , was determined by exact transfer-matrix methodsthese serve as a valuable test for the accuracy of the DMRG
[19]. Once again there is a minimum aboVg, now atL method.
~2.23%,, with an amplitude that is 6.6 times the Casimir  Our paper is organized as follows. Section Il defines the
valueW, ,(0)=A,  (d—1). model and summarizes its phase behavior. Section Il de-
Forh,;=h,>0, the lineh=0 lies in the liquid or spin up scribes briefly the DMRG technique and presents our results
(+) phase away from the line of capillary condensation affor strong surface fields. In Sec. IV, we present results for
h.o(T)—see Fig. 1a). Since we are primarily interested in h;=h,=0. We conclude in Sec. V with a discussion and
the behavior off 5., in the neighborhood ofi.,(T) and in  summary.
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[l. THE MODEL AND ITS PHASE BEHAVIOR where Y (w) is another scaling functiom\, is the surface

The system we consider is an Ising spin system in slaiaP exponentA is the bulk gap exponent, andis the bulk
correlation length exponent.

geometry subject to identical surface fields. Our DMRG re- (b) hy=h,=0. In films with free boundaries, the Ising

sults refer to thel= 2 Ising strip defined on the square lattice : :
of sizeL XM, M—o. The lattice consists df parallel rows symmetry dictates that two-phase. coexistence must the at
at spacinga=1, so that the width of the film ika=L. At .:0' Thus, fo_rd>3 and large but finite, th? line of coex-
each site Iabe:Ieciij there is an Ising spin variable istence remains d&i=0 but ends at the critical temperature
. ' RPN . i T..<T, given by Eq.(3) with X,(0)=const—see Fig. (b).
taking the valuer;= £ 1. We assume nearest-neighbor inter- c L oo s :
actions of strengtld and a Hamiltonian of the form In .d—2 Ismg films. th? situation is slightly d|.fferent. A.‘S.
mentioned earlier, there is no true phase transition for finite
L, i.e., no nonanalytic behavior of the free energy. Deriva-
) tives of the free energy are rounded, giving rise to extrema
’ rather than singularities. However, the roundindhior in T
is extremely small for large., namely of the order of
¥*3’2exp:—La(T)/kBT] [23], so that thepseudofirst-order
ransition remains very sharp and may be located by simula-
ion [25] or, indeed, by DMRG[26]. For thed=2 Ising
[nodel, the surface tensian(T) is given exactly by

(1) (L)
H=-J (Z) a'ia'j-l—hz a'i+h12_ Ui+h22 T
i i i i

where the first sum runs over all nearest-neighbor pairs o
sites, while the last two sums run, respectively, over the first
and thelLth row. h is the reduced bulk magnetic field ahgl
and h, are reduced surface fields corresponding to direc
(“contact™) interactions between the surfaces and the spins
in the film. We assume thdt;=h,=0. The generalization
of Eq. (1) to d=3 is immediate.

For an Ising film that is of infinite extent id—1 dimen-
sions parallel to the surfaces true two-phase coexistence m
occur providedd — 1=2—the lower critical dimension of the
corresponding bulk system. Criticality for finitethen lies in
the universality class of the bullk—1 system. The location
of the critical point in the bulk field, temperaturk,I) plane
depends on the choice of surface field: lll. DMRG RESULTS FOR STRONG SURFACE FIELDS

(@) hy=h,>0. In this case, the phenomenon equivalent to h,=h,>0
capillary condensation takes place when the bulk magnetic . . .
field h<0 favors the negatively magnetized phase, whereas The DMRG is a te_chnlque ba.sed on the_ transfer-matrix
the surface fieldsh;,h, favor the positively magnetized appro_ach[ZO]. It pr_owdes an eff|C|¢nt algorithm for co.n-
phase. For large, two-phase coexistence occurs along a Iinestructlng the effective transfer matrix for large systems; the

h.o(T) which is given approximately by the analog of the effective transfer matrix is then diagonalized numerically.
Kceolvin equation 9 PP y by 9 We have used the finite-system version of the DMRG algo-

rithm designed to perform very accurate calculations for
finite-size systems[28,29. As emphasized earlier, the
—heo(T)=a(T)/Lm*(T), (2 DMRG works equally well forn#0, where no exact solu-
tions are available, as for=0 [21,22. The total free energy
wherea(T) is the interfacial tension between the coexistingf per site is obtained from the largest eigenvalug of the
bulk (+) and () phases andn*(T)>0 is the bulk spon- effective transfer matrix
taneous magnetizatiopA brief derivation of Eq(2) is given
in Sec. 1] The presence of thick wetting films af spin at 1
the two surfaces in the<) phase gives rise to nontrivial BF(L,T.h,hy)=— ['nAO* (6)
corrections that shift the condensation line to larger values of
|h| [1], nevertheless, the Kelvin equation does predict thQNhere,Bz(kBT)*l.
correct qualitative behavior of the condensation line at low
temperatures. The two-phase coexistence ends (icapil-
lary) critical point (e, T ) whereT. (h;) lies below the
temperature of the bulk critical poifft.—see Fig. 1a). The The total free energy per site of tlde=2 Ising film with
expression for the critical temperature st is given by surface fieldh; =h, may be written as

o(T)=2kgT(K—=K*), (5)

whereK = J/kgT andK* satisfies sinh(R)sinh(X*)=1[27]
nd the critical exponents ane=1, A=15/8, andA,;=1/2
1. For sufficiently largel, we expect the scaling result3)
and(4) to remain valid ind= 2, provided, of course, there is
some way of locating the pseudocapillary critical point.

A. Solvation force

1l » f(L,T,h,hy)=f,(T,h)+2f,(T,h,hy)/L+T*(L,T,h,hy)/L,
[Ta(h) — Tl Te=—L "X (hL22), 3 1 D)= (T +20u(T R /L1 e
whereX.(w) is a scaling function. A similar form holds for wheref, is the bulk free energyf,, is the L-independent
Ahg=hc(hy) [5] surface excess free-energy contribution from each surface,
and f* is the finite-size contribution to the free energy. All
Ahg~—L"A"Y (h LA/, (4)  energies are measured in units béind the temperature in
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units of J/kg . f*, which vanishes fok. —«, gives rise to the

LW = T =0 A

generalized force, which is analogous to the solvation force ?
between the walls in the case of confined fluidl§ éllJ
I
fsow=—(F*/dL)1 hn - (8) : Pﬁ
& %\ Lo
For Ising systems with identical surface fields, the solvation =100 b ——— 7=-10 | F
force is attractive, i.e.f5,,<O. = z==20 K
From the general theory of critical finite-size scalirg, L
it follows that near bulk criticality the solvation force for -150 ¢ \
identical surface fields should take the following scaling AN
form (ignoring nonuniversal metric factors % a
200 0 2 4 6 8 10

foon KaTe=LOW(L7",L|h["2,LhY52), 9

whereW s a universal scaling functior=(T—T.)/T., and
v, A, andA; are the critical exponents introduced earlier. As
mentioned in the Introduction, at fixed points of the
renormalization-group transformatier=0, h=0, h;=0 (or
h,;==) the leading-order decay of the solvation force for
—oo js algebraic since the scaling function reduces to
W(0,0,0)=Ay(d—1) orW(0,000)=A,.(d—1). Ay and A,
are the universal Casimir amplitudes. For the2 Ising
model A, = Ay= — w/48[30].

In order to obtain the solvation force and its scaling func-
tions, we first calculate the excess free energy per unit
“area”

Ww.»

fexL)=(f—fp)L. (10 y

The bulk free energy per spifj, is known exactly only for FIG. 2. Dimensionless scaling function of the solvation force
h=0 [27]. For nonzero bulk field we evaluatg, numeri- W, . (y)=W(z,y,X)=L?fs,,/kgT.  calculated  for  two-
cally. We calculate the largest eigenvalue for finite systemglimensional Ising strips of width =70 (asteriskg 100 (circles,
(strips with free boundary conditions and widthsranging 150 (diamond$, and 200 (squarek plotted as a function ofy
from 30 to 300. We then extrapolate to—w using the =L[h[¥*at fixedx=LhZ=20000 and several choices of the scal-
Bulirsch and Stoer methd@1] and obtain the value df, for ~ ing variablez=L7. In (&) for z=—20, —10, the sharp jumps to a
each state pointT,h). Such an extrapolation is guaranteed strongly attractive solvation force 3sis reduced denote capillary
to be of high accuracy provided the ratio between the widtrfondensation of the) phase; scaling is not well obeyed. (o)

of the largest strift. .., and the bulk correlation leng, , is z=-1.26, 7_0.05, 0.95, the solvation force exhibits a minimum
much greater than unity; the smalley,,,/ &, the less accu- and the scaling s very well obeyed.

rate are the extrapolated values. Special tests were performed . . .
at T=T. where the ratio becomes smg2l1]. Of course, it is rounded Jump of the solvatlpn force from Zero t.o a negative
necessary to obtain a very accurate bulk free energy in ordevlalue asy 1s rgdugec[see Fig. 22)]. In the vicinity of the .
to obtain an accuraté,,(L) and, hence, a reliable solvation Jumps thg scaling is pot W?" obeyed. We can undergtand t.h's
oce. By clelatigto (L) at L2 and Ly we o 2 °C00 113 dcentnous o chvscterte s
fson=—dfex(L)/dL by a finite difference.

Calculations were performed for films of width= 100, sation phase transitioftl, 11]. At fixed large L and fixed

150, and 200 at several fixed temperatures above and belotv%mperature'|'<TcL, fsol, should change abruptly from val-

T.. hy was chosen separately for edchso that the scaling Ues appropriate to a spin dowrr (ga9 phase
variablex=Lh!"*(=Lh? in d=2)=20000, which is suf- fow=~0, (11)
ficient to ensure each system corresponds to the infinite sur- 0

face field scaling limif21]. Examples offs,, as a function to negative values appropriate to a spin up)((liquid)

of h for fixed L=200 and various fixed temperatures werephase

given in Fig. 1 of Ref.[22]. Here, in Fig. 2, we plot

szsolv/kBTC:W(Z!yrx) as a function of y f;0|v~[u—,t/,3at(T)](p| _pg)v (12)
=L|h|”2(=L|h[®® in d=2) for fixedx=20 000 and sev-

eral fixed values of=L7"(=L7 in d=2). For the lowest upon increasing the chemical potentia[12]. Here,us,(T)
temperatures considered here, corresponding to the scalifg the chemical potential at bulk two-phase coexistence and
variable z equal to—20 and—10, we find a very weakly p, andp, are the coexisting densities of bulk liquid and gas,
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respectively. This result is obtained, in magnetic languagel,(T,h) is the film thickness. By contrastn ~0 and Eq.
from the following(macroscopitapproximation for the total  (20) may be rewritten for the complete wetting situation as
free energy of the two confined phases:

a(T)
+ + 2 + _hCO(T)% * ’ (21)
Fo~fp (T + - fiu (T.h,hy), (13 m* (T)[L—21(T,hgo) ]
which is the standard modification to the Kelvin equation,
valid for short-ranged forceldl,11]. In d=2 however, fluc-
Uations of the wetting films give rise to an additional con-
ribution to the free energy and_¢2l) in the denominator
of Eq. (21) should be replaced by.(-3l) [32].
fo~2f-(T,hhy), (14) Qsing t.he Kelvin equatiorﬁZ) for hCO(T), it follows that
the jump in the solvation force is given by

where* denotes the two phases afjfl denotes the surface

excess free energy for the wall-spin up/down phase. Sinc
this approximation ignores interactions between surfaces, I
is valid for L—o. We find that in the ) phase

which is independent df so that Eq.(11) follows, while in

the (+) phase AfSO|UE + f_ ~2hco(T)m*(T)~—20(T)/L,

solv ™ 'solv
(22

fo(L)~L[fg (T,h)—f, (T,h)]+2f (T,h,hy). (15 . , , ,
e L) =L{fyp (T.0) =1, (T, + 21, ( 0 (19 i.e., the magnitude of the jump should decrease in the same

Expanding the bulk free energy to first orderhin fashion as the interfacial tension &sincreases at fixedL.
Our numerical DMRG results agree with this prediction for
fo (T,n)~f, (T,00Fhm*(T), (16)  low temperatures indicating thég,,, displays the features of

“classical” capillary condensation, albeit weakly rounded,
wherem* (T)>0 is the bulk spontaneous magnetization, wein this d=2 model.
find For higher temperatures such tletL 7> —10, the sol-
N . N vation force changes its behavior significantly. &sin-

fex(L)~—=2Lhm*(T)+2f,(T,h,hy). (17 creases, the jump df,.;, gradually transforms into a mini-
mum and plots of%f,, versusy=L|h|®5 obtained for
different L, begin to lie closer to a common curve. At
=—1.26, the scaling is very godaee Fig. 2b)]. We con-
firmed that the scaling also holds aboVg. Moreover, the
shape of the scaling functioV, . (y)=W(zy,y,20 000) for
fi ~2hm*(T) (18) 2,=0.95 is similar to that below; the depth of the mini-
soh ! ; ; ; it

mum of the scaling function decreases and its position moves

which is equivalent to Eq(12) since 2n* (T) corresponds to monotonically towardsy=0 as z, increases. Finally, we

(pi—pg) andh to [u—usaf T)]. The calculated gradients CheCkedJ?at foro~0 , as well as fozy<0, W, . (y) varies

(9f%,,/oh)1 for z<—10 agree with the known values of 8 =~y for y—0; see also Figs. 8 and 9 in ReR1]
which refer toz,=0. This implies, via Eq(9), that the sol-

2m* (T) to a relative accuracy 10 [22]. ; , . ! .
Coexistence occurs, at=h_,(T), whenf*=f". We es-  Vation force is a linear function df for smallh and fixedL.

timateh,,(T) by expanding the surface excess free energieSUch 2 result is, of course, predicted by Eg8) for T

f* about their values at bulk coexistende<(0), i.e., about = lc- Thatitis valid very close td is more surprising and
O'Wt(T h,). To first order inh ) indicates some residual effect of the metastable lodn-
w 1)

densing phase.

Recall that forh<0, the (—) phase is stable in bulk so the
first term in Eq.(17) reflects the fact that theH) phase
would be metastable in bulk. The resulting solvation force
—df (L)L is

fvi\;(Trhvhl)mo-ﬁ(thl)_hm;: ) (19)
B. Total adsorption

wheremg = — (f;,/dh)1 , is the surface excess magnetiza-
tion evaluated close to capillary condensation. It follows that

We have calculated the total adsorptibndefined as

L
av;(T,hl)—o\iv(T,hl)’ 20 F=|§1 m, (23)
Lm*(T)—(mg —m,)

—heo(T)~

since this quantity also provides an important signature of
which is equivalent to results given in Ref&82,26. For the the first-order phase transitiol. exhibits a discontinuous
strong surface fieldh, considered here, a single wall is al- jump at capillary condensation from negative values charac-
ways wet completely by ) phase so thato,(T,h;) teristic of a (—) phase, with wetting films oft spins, to
=0,,(T,hy)+a(T), where o(T) is the interfacial tension positive values characteristic of &{ phase condensing be-
between () and (—) phases, and to leading order irL1/ tween the two surfaces)=(o) is the magnetization in row
Eq. (20) reduces to the Kelvin equatiof?). For largelL, I. It is straightforward to show using the approximations
|heo(T)| is small and thick wetting films of {) phase de- given earlier and’=—L(df/dh), 1 s, that the jump in ad-
velop at the surfaceéwalls). Then, mg ~2Im*(T), where  sorption
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e excellent—see Fig. (8). Note that forz=0, G, (y) still
1 exhibits a steep increase gplecreases indicating some re-
sidual condensation.

C. Longitudinal correlation length

An important quantity that arises in strip geometry is the
longitudinal spin-spin correlation lengty, which may be
expressed in terms of the ratio of the largastand second
largestA ; eigenvalues of the transfer matrix

=5 | === z=-10 1
==20 —
: =] &ML, T,h,hy)=—In[A;/Aq]. (26)
~10 0 2 4'1 é é 10 In the case operiodic boundary conditions, the two largest
y eigenvalues of the transfer matrix are asymptotically degen-

erate at pseudocoexistenee-0, T<T., and §H’1—>0 asL

—o0, More generally, one knows that the dominant spin con-
figurations of a system at pseudocoexistence involve succes-
sive domains of {) and (—) magnetization of a character-
istic length§; separated by domain walls that reach across
the strip ands is related to the interfacial tensian(T) via

g~exgLa(T)/kgT], (27)

where we ignore prefactors, i.§|fl is exponentially small as
L—o [23]. For small |h| (but outside the avoided level
crossing regionand largel, the inverse correlation length is
given by[33]

y g t=2m*(T)|h|L/kgT. (28

FIG. 3. Dimensionless scaling function of the total adsorption
G, .(y)=G(zy,2)=T|h|"* plotted as a function of=L|h|®"®
for the same systems and the same choice of scaling variables _ .
=20000 and varioug=L 7 as in Fig. 2. The jumps ife) occur at (kgT/L)In Ao and f,=— (k_BT/L)In A a';e linear func-
the same values of as those in Fig. 2 and are associated with tions of h  with s!opes given by .—m sgr_1(h_) and
capillary condensation of theH) phase(positive adsorptionasyis M sgnt), respectively. Note, that in the limit —c,
reduced. In(b) the adsorption exhibits a maximum and scaling is fo(N, T;L) reduces to the bulk free energy per site.
very well obeyed. Little is known abouté in the present case of broken

symmetry,h;=h,>0. We calculate this quantity for a strip
AT=T" =T~ ~2m*(T)[L—2I(T,ho)], (24) of width L=200 as a function oh for a series of tempera-
tures (see Fig. 4. At reduced temperatures;=—0.1011,
—0.0546, and—0.0505, where the solvation force and the
adsorption behave in a way characteristic of capillary con-

This formula follows from the fact that for smalh| and
large L the so-called “free-energy levels’fy(h,T;L)

where, as in Eq(21), I(T,h.,) is the thickness of a wetting
film at capillary coexistence. Plots df versush for L . Y -
=200 exhibit jumps at low temperatufeee Fig. 2 of Ref. d‘?”saﬂgnéu has a sharp minimum at sonfg,;,(T) <0
[22]) which are consistent with this simple formula. Here, in With & “(hmin) ~0 indicating asymptotic degeneracy &f
Fig. 3, we plot the scaling function of the adsorption@ndA;. We identifyhyin(T) with a point of pseudocoexist-

G, . (y) defined by[21] ence noting that the values bf,;,(T) lie very close to those
wherel” andf,,, jump—see Figs. 1 and 2 of RdR2]. In
['=|h|(B=AG, , (y)=|h|®B~"/2G(z,y,20000, the close neighborhood of its minimurﬁH‘1 is symmetric

(25) and increases linearly ifhn—h,;,(T)|.However, the slope is
slightly less than that given by E®8) since the slope of;

with (8—v)/A=—7/15 ind=2, evaluated at the same fixed as a function oh appears to be smaller tham (T). Outside
value x= Lhizgo 000 and the same values of the scaling2 rather narrow linear region, the variation of the correlation
variablez= L r as for the solvation force. As in Fig. 2, for the length with h reflects the asymmetry of our system. For
two lowest values of, we find very weakly rounded jumps >hmin, & * continues to increase almost linearly, while for
of G, ., (y) and significant deviations from scaling. Note that h<<hp,;,, the increase irfu‘l is much slower. As the tem-
the jumps occur at the same valueyafs those inW, , (y). perature increases, the minimumg‘qff1 gradually lifts away
Closer to the bulk critical point the scaling becomesfrom zero and becomes more shallow. Whether these fea-
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20 w 1 1
O 1=+0.0135 j
0—0 1=+0.0063
S 1=+0.0031
15 | +——+1=0 v
—11=-0.0063
—— 1=-0.0126 ,,
- 2 1=-0.0505 7
F10 | +—+ 1=-0.0546
o T T1=-01011 < g 0y 0
S ;
57
0 % s il b
-0.004 0003  -0002  -0.001  0.000 -1 — al, ‘ ‘
h 0 50 100 150 200 O 50 100 150 200
1 1
FIG. 4. Inverse longitudinal correlation lengfh units of lattice o o ] ]
spacing as a function of the bulk magnetic fieid(in units ofJ) for FIG. 6. Variation of the magnetization profife, with the tem-
an Ising strip of fixed width. = 200, surface fieldh; =h,=10, and ~ Perature at fixed bulk magnetic field (in units of J): (& h
several reduced temperatures (T—T,)/T. At the three lowest = —0.002677 andb) h=—0.001 493 calculated for the same sys-
temperatures, there is a sharp minimum, wifit~0, which cor- €M asin Figs. 4 and 5, namely;=200, hy=h,=10. m, is dimen-
responds to pseudocoexistence. sionless|| is in units of the lattice constant. The top curve(a

consists of profiles evaluated &t 2.049 974, 2.049 988, 2.049 99,
.050 002, 2.050 012. The bottom profile correspond$+®.050

26. Profiles in(b) correspond tdfrom top to bottom T=2.179

79, 2.179988, 2.179994, 2.179998, 2.18, 2.180002, 2.180 008,
2.1802. (a) corresponds to crossing the pseudocoexistence line
D. Pseudocoexistence line while (b) is a “supercritical” situation.

tures may be accounted for by extending the bubble model cﬁ
Ref.[33] remains to be investigated.

In Fig. 5, we present the lindy(T) defined by the

maxima of the total free-energfyor, equivalently, by the inverse correlation Iengtﬁn’l. At low T, these two sets of
zeros of the total adsorptioli, for a strip of fixed widthL characteristic points lie on the lirtg(T). For higherT, the
=200. In the same figure, we also plot inflection points ofcurves separate since in the bulk critical region, the behavior
the rounded jump of 5o, and the minimah,,(T), of the  of I', f,, , and reflect different features of criticality. The
locus of hy(T) moves to largeth| for T>T., as does the
locus of inflection points, whereds,,;,(T) moves towards
h=0. Thus, for sufficiently lowT, it is natural to identify

; ho(T) with the pseudocoexistence litg,(T). Determining

! the pseudocritical temperatufe, is more difficult since the
i critical point is not sharp in this quasi-one-dimensional sys-

| tem and we must examine various criteria in order to esti-

mateT., . The erosion of the jumps in the adsorption and the

24

o

solvation force takes place far between 2.155 and 2.160.
Another criterion concerns the behavior of the minimum of
gH’l, which for T between 2.16 and 2.17, lifts away from
zero indicating crossover from exponential decayfﬁf)f1
with L, characteristic of pseudocoexistence, to a different
type of L dependence. The variation of the magnetization

. ‘ s . profiles with temperature near the lihg(T) provides a fur-
—0.003 -0.002 —0.001 0.000 ther signature of pseudocoexistence. In Fig. 6, we present
h data for the evolution of the magnetization profile as a func-
tion of temperaturd at two fixed values of the bulk field.

sorptionI") (solid line), inflection points off 55, (Squares minima For h: —0.002677, the prof!le jumps abruptly on crossing
of g[l (circles, and maxima of the specific he@y, (asterisks as f[he lineho(T). On t*he lowT side (+) phase, the profilen,
functions of the bulk magnetic field (in units of J) calculated at 1S constant and=m*(T), except very close to the surfaces,
fixed temperatureT (in units of J/kg) for the same systemL( While on the highT side () phasem~—m*(T) in the
=200, h,=h,=10) as in Fig. 4. The bulk critical temperatufe central region and there are wetting films 6f spin at the
~2.269 185 ¢=0) is denoted by the horizontal line. Pseudocoex-surfaces. By contrast, foh=—0.001493, the profiles
istence between—) and (+) phases occurs alongy(T) for T~ change continuously &g increases, which implies that the
<2.16(see text pseudocritical temperatufk,; must lie below 2.18. Yet an-

FIG. 5. Maximahy(T) of the free energyor zeros of the ad-
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9 ‘ ‘ ‘ For the case of Ising strips id=2 subject to surface
fieldsh,;=h,>0, we expect the singularity i to occur at
capillary condensation, i.e., it should occur on the line

0—oO0T=2.05 J, h.o(T)<O0 and be weakly(exponentially small inlL)
6 |F—oT=2.18 | rounded. What do we expect f@, near the(pseudo tran-
—0 T=2.2366 sition?

If the broken symmetry, arising from the surface fields,
modifies the phase diagram to that in Figa)l so that
dh;,/dT>0, the latent heat should manifest itself either by
varying h at fixed T or by varying T at fixed h. In other
words, there is “field mixing” andCy andy should acquire
the same type of weakly rounded singularity. We have cho-
sen to analyz€, as this quantity is readily calculable from

0 . ‘ ‘ the total free energy obtained in DMRG.
-0.004 0003 -0.002  -0.001  0.000 Figure 7 showsC,, versush for L=200 and three tem-
h peratures belowl,: T=2.05;2.18;2.2366. For each tem-

FIG. 7. Specific heaC,, (in units of kg) calculated ford=2 ~ Perature, there is a pronounced maximum at somg(T)
Ising strip of width L =200 with surface fieldh,=h,=10 as a <0, Which shifts toward§=0 as the temperature increases.
function of h (in units of J) at fixed temperature§=2.05, 2.18, At T=2.05, the maximum is extremely high and extremely
2.2366(in units of J/kgT). Note that the maxima which occur for narrow inh, whereas foif =2.18, its height is reduced and it
the two lowest temperatures are off the scale of the present figurés more rounded, although this is not obvious on the scale of

o ) ) . the figure. ForT=2.2366, the rounding is clearly apparent.
oth.er |nd|c§1tor of'pseudocoexstencg is the specific heatrne |0cus ofh,.(T) is plotted in Fig. S(asterisks and lies
which we discuss in the next subsection. on top of ho(T) (maxima of free energyuntil rather high

. temperature§~2.21 when small deviations occur. On ap-
E. Specific heat proachingT,, the height of the maximum i€, reduces

Second derivatives of free energi@esponse functions rapidly and it moves quickly towarde=0. In zero bulk
usually provide key information about the nature of phasdield, Cy takes its maximum value abovie, at T=2.2793,
transitions. Although the behavior of the susceptibijtat a  corresponding to reduced temperatwre0.0045. We should
capillary condensation transition th=2 Ising systems has note that the minimum of,,, ath=0 is located at a slightly
been studied in Monte Carlo simulationi34], the specific  higher temperatur&=2.2835 orr=0.006 31 and thaju_l at
heatCy(L,T,h,h; E—'l'(&zf/ofl'z)L,h,h1 does not seem to h=0 has its minimum aff=2.287, very close to that of
have been investigateg®5]. In the bulk Ising system, the fsop, -
specific heat has quite different behavior from the suscepti- In Fig. 8, we plotCy, as a function of the temperature for
bility as the phase boundary is crossed by chanpiagfixed the same two values of the bulk figtdat which the magne-
T<T.: x exhibits a delta-function singularity ah=0, tization profiles were calculated in Fig. 6, namely

whereas Ising symmetry ensures t@at shows no jumgno  =—0.002677 andth=—0.001 493. For both cases, there is a
latent heat pronounced symmetric maximum. This is very sharp Hor
16 Q) 16 .
12 112 - ]
. FIG. 8. Specific hea€,; (in units ofkg) cal-
O gl gt | culated for the same system as in Fig. 7 but now
'?c as a function of temperatufE (in units of J/kg)

- at fixed bulk field(a) h=—0.002 677 andb) h
=—0.0014935. Note the very fine temperature
scale.

4 a - 4 b
0 —CCIIIIHIII)—J—LW 0 ~CIIIII&IUIIID—
2.04997 2.05000 2.17997 2.18000

T T
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=—0.002677[Fig. 8@)] whereas forh=—0.001493, it is Nevertheless, it does seem to account for the variatidd, pf
much reduced in height and is significantly broadefiéig.  with h that is observed slightly away froim.,(T).
8(b)]. Such behavior is consistent with the temperature varia- To complete this section we note that the symmetry
tion of the profiles. The smooth variation 6f, in case(b) breaking associated with the surface fields leads to a nonzero
reflects the smooth variation of the profiles shown in Fig.latent heat at the condensation transition, i.e., the entropy
6(b) and confirms thal =2.18 is “supercritical.” difference between the) and (—) phases is nonzero—as
The variation ofCy with h is less symmetric than the one would glean from the magnetization profiles in Fig) 6
variation withT. Close examination of Fig. 7 shows that for The latent heat is proportional to the slope of the coexistence
each temperatureG,, increases with increasing up to the  curve, which may be estimated from the Kelvin equation
“transition” and decreases thereafter. We attempt to under{20). It should be inversely proportional to, the width of
stand this feature of the results by considering the simpl¢he strip.
theory for the free energies of the two “phases” that we
used to describe capillary condensation in Sec. Il A. From
the approximation13), we may obtain the specific heat in
the (=) and (+) phases. Expanding the bulk free energy In this section, we consider the Ising strip with free
[see Eq(16)] to first order inh we find boundaries, i.e., the surface fielis=h,=0. This is the
case whose phase diagram is described in Kig. Now the
Ising symmetryh< —h is preserved andpseud® coexist-
ence occurs along=0:h.,(T)=0. Crossing this line gives
rise to a jump in the total adsorption frobir= —Lm*(T) for

IV. DMRG RESULTS FOR SURFACE FIELDS h;=h,=0

d?m*(T) ot

Ca~Cin(T.0) = (Th———~(2TIL)— (29

and h<0, (—) phase, tol'~+Lm*(T) for h>0, (+) phase.
However, unlike the case of nonzero surface fields, there is
2m* (T) 92+ no jump in the solvation force and no singularity in the heat
C/,=~Cy(T.0)+(Thy——=——(2T/L)—,., (30)  capacity. The susceptibility does exhibit a weakly rounded
dT? aT singularity.

_ -~ If we restrict consideration to bulk field=0, it is pos-
where Cyy,(T,0)=C}}(T,0)=Cyp(T) is the bulk specific sjple to obtainexacttransfer matrix solutions and we sum-
heat at coexistence=0. If we also expand the surface ex- marize some of the main results here. These provide valuable
cess free energfy, as in Eq.(19), it follows that benchmark data against which DMRG may be tested. We
then apply the DMRG foh# 0, where exact solutions are
not available.

The solvation forcefg,, was analyzed by Evans and
Stecki[19]. They showed that the scaling functiaM, de-

Co~Chp(T)—Th

d’m* (T) ( 41(T,hgo)
1_
dT? L

4Th 072|(T,hco) 2T #%0(T,hy) fined by Eq.(9) has the property, fod=2,
. mx
L gT? L 472
WOO(_L710!O)=W++(LT10100)1 (33)
(31
and where subscripts 00 refer to,=h,=0 and+ + to h;=h,
=, This implies that for free boundaries, the solvation
2 4 2.+ (T h force evaluated at=0, in the scaling limit, has a minimum
Cim o)+ (Thy) D oy Z0w(T) gt 7= 7= ~1.2642[19]. In Fig. 9a), we plot fsy, as a
dT2 JT? function of T for L=200,h=0 andh;=h,=0 obtained us-

(32 ing the formulas given in Refl19] and, for comparison,
results obtained by the DMRG method. The agreement is

where we have assumed, as previously, tmgt~0 and  excellent.
mg ~21(T,heo)m* (T), with I(T,h.,) the thickness of the Exact expressions for the specific h€at and its scaling
wetting film near capillary condensation. For larggwe  function were derived by Au-Yang and Fishg36]. Cy
expect the bulk terms to dominate and noting thatevaluated ah=0 has its maximum a=L7=—0.8929. In
d?m*(T)/dT?<0, it follows that Cy, should increase lin- Fig. 9b), we present the DMRG results f@;; obtained for
early with h as h—h(T) and decrease linearly foh  L=200, c.f. Fig. 9a). As one can ascertain from the inset,
slightly larger tharh.(T), as is found in Fig. 7. The differ- the maximum obtained from the DMRG is at the same value
ence in heat capacity between the two “phases” should b@s that given by the exact resuelative error 10° or less.
given byCH CH~2ThCO(T)(d2m (T)/dT?), where, once This gives us confidence in the accuracy of the DMRG tech-
again, we have ignored surface contributions. nigue and in our numerical methods for obtaini@g .

Of course, this simple treatment was designed for true The behavior ofé * may also be determined from the
capillary condensation as would occur in a three-dimensionagéxact diagonalization of the transfer matfs]. For largeL
Ising system. It does not describe the weakly rounded singuand low temperatures so that(T)/kgT>1, 5” is expo-
larity that occurs in the present two-dimensional systemnentially small inL
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2.47

FIG. 9. (a) Solvation force(in units of J) and
(b) specific heatCy; (in units ofkg) as a function
of the temperaturd (in units of J/kg) at vanish-
ing bulk field h=0 for thed=2 Ising strip of
width L =200 with free boundary conditions;
=h,=0. In (a) the circles denote the DMRG re-
sults and asterisks the results from the exact di-
agonalization of the transfer matrix. Ifb) the
circles denote the DMRG results and the vertical
dotted line the maximum o€y given by an exact
calculation: T, 5,=2.25906. The inset shows, on
an expanded scale, that the DMRG results have
their maximum at the same position.

2.262

2.259

225

for h=0 only. For the two lowest temperaturds,,, is al-
most zero and nearly constantlm As T increases g, (h
=0) becomes more attractive afig,,, increases monotoni-
cally with h. For higher temperature$,,,, develops a sharp
minimum ath>0; this decreases in depth and shifts to larger
values ofh asT increases towards. . This trend persists for
T>T.; for 7=0.0063,f,,(h=0) is almost zero, but there
is still significant attraction foh>0 with a broad minimum
nearh=2.4x 104,

The results for the specific heat in Fig. 11 exhibit equiva-
lent features. At low temperature§,; decreases monotoni-
cally with h, whereas for higher temperatures, a maximum
develops ah>0. At 7= —0.0045, wher&(h=0) takes its
maximum value, the maximum occurs néer 4x 10 °. As

g t~2(sin o(T)/kgT]/sinh K)exd — Lo(T)/kgT].
(39

As T—T_ the surface tension, given by E@&), vanishes as
o(T)/kgT~—-4K.7—0, where sinhR.=1, ie., K.
~0.44068, and foz~1, Eq.(34) is no longer valid. In the
regimez=L 7~ — 1/4K . the form ofgu’1 crosses over tf37]

g i=a(T) kg T+ /2L~ — 4K T+ m/2L. (35
Figures 10 and 11 show DMRG results fag,, andCy,

respectively, as a function &f at several values of for L

=200. Both functions are symmetric Im so we show results

&

& 20 || o—or=—0a0m1
S o—0 1=—0.0506
_25 ;—: PPN T=—0.0126 —20
|  —=1=-0.0063 =) =25
=30 L =0 -
[+t t=+0.0063 X‘X gotl —30
-35 N -35
—40 ! ! ! ! —40 4
0 2 4 6 8 10 10°h
10'h

FIG. 11. Specific heaCy (in units of kg) as a function of the
bulk field h (in units of J) at several temperatures close to the
critical temperature T,: 7=(T—-T.)/T.=—-0.0305 (pluses,
—T.)/T, calculated using the DMRG method for tlde=2 Ising —0.0217 (crossey —0.0126 (asterisky —0.0063 (triangles,
strip of width L=200 with free boundary condition$r; =h,=0. —0.0045(diamonds, 0 (squarey 0.0063(circles, calculated using
The inset shows the results on an expanded horizontal scale netire DMRG method for thel=2 Ising strip of widthL =200 with

FIG. 10. Solvation forcé,,, (in units ofJ) as a function of the
bulk field h (in units of J) at several reduced temperatures (T

h=0. Note that the minimum value df;,,(h=0) occurs atr
=—0.0063(triangles.

free boundary conditions$t; =h,=0. Note that the maximum value
of Cy(h=0) occurs atr= —0.0045(diamonds.
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T is increased furtheiCy(h=0) decreases rapidly, and the T or by increasing at fixedh—see Figs. 7 and 8. For higher
maximum shifts to larger values of temperaturesCy, exhibits a very pronounced maximum,
The appearance of two symmetric minima fig,,, at  which lies close to the extrema calculated for other quantities
hmin>0 and—hy,;,, could have been anticipated on the ba-until T is very close tdT . when deviations occur—see Fig. 5.
sis of our previous DMRG results foF=T.(7=0) where We also carried out calculations for the case of free
the scaling function/(0y,0), with y=L|h[**5 was deter- poundariesh,=h,=0. Since exact results are available for
mined [21]. That scaling function has its minimum near  the particular casé=0, this allowed us to confirm the ac-
=1.12, which corresponds 10~2.9¢,,, where&, is the (T ¢yracy of the DMRG—see Fig. 9. For free boundaries Ising
andh dependentbulk correlation length. Our present results gymmetry is not broken and the various properties exhibit a
show the evolution of the symmetric minima as a function of auer different variation withr and h from these obtained
temperature. It is likely that the position of the minimum i nonzero surface fields. For temperatures slightly below

e T o, Geveops tuo sharp minma symmelrc .
P 9 £, 10), i.e., the solvation force is more attractive in nonzero

tigated this in detail. We would expect the two symmetricfield Similarly. Cu. develops two symmetric maxima—see
maxima inCy to be determined by a similar criterion but Fig '11 Y & P y

with a different numerical prefactor.

Finally, we remark that the temperatures at which the spe- OUr Present results are for=2. We may speculate as to
cific heatCy(h="0) has its maximum and the solvation force What might occur in thed=3 Ising film with hy=h,>0.
fo(h=0) has its minimum both lie above what we might Now there is true capillary coexistence along a Img(T)
identify as a pseudocritical temperature. The latter may b&nding in a true capillary critical point ahg, ,Tci). fsol,
estimated very crudely by considering the smtaldepen- I', andCy should exhibit similar features to those found in
dence of the adsorption and éf * and we find that for. ~ d=2. BelowTe,, fso), will exhibit a discontinuous jump:
=200, 7=—0.0126, orT=2.23 is already “supercritical,” Afson~—20(T)/L [see Eq(22)] accompanied by a jump:
i.e., there has been crossover into a regime different fromdI ~2Lm*(T) in the total adsorptiopsee Eq(24)]. On the
pseudocoexistence. critical isothermT=T, , the jumps are eroded witAT

~(hg —h)¥ ash—h_ , where =15 corresponds to the
d=2 Ising exponent. For temperatures abdve, fs,, and
V. DISCUSSION I should exhibit scaling functions similar to those shown
here in Figs. 2 and 3 but with the appropriate scaling vari-
In this paper, we have employed the DMRG technique toablesy=L|h|** and z=L 7" now determined by thel=3

investigate various properties of two-dimensional Ising stripgyy|k critical exponentss and A. Moreover, forT<T. and
of width L subject to identical surface fields. We have con-smg|| |h|, f,,, should still be given by Eq(18), i.e., it

sidered temperature¥ above and below the bulk critical should increase linearly with. Since the gradient is
temperaturel; and a range of bulk fields. In the case of _>m*(T), it should vanish as+ 7)? with 5~0.325 ind
nonvanishing surface fields; =h,>0, the preferential ad- —3. sych behavior is an important signature of residual con-
sorption of (+) spins at each wall leads to a shift of the bulk gensation and is found in explicit mean-field res{igg] for
phase boundary th<<0. This phenomenon dpseudo cap- 3 Landau(square-gradieitheory, whereg=1/2.

illary condensation has a profound influence on many prop- For the d=3 film with free boundaries, the solvation
erties of the Ising strip, not just at low temperatures wherggrce and specific heat should exhibit similar behavior to that
the (weakly roundegicondensation transition takes place, butghown ind=2, i.e., similar to in Figs 9-11. The extrema
also for T above the pseudocapillary critical temperaturemay pe less pronounced, and will lie at somewhat different
TeL, i-e., forTnearT.. The most pronounced features in the positions in the phase diagram since the scaling functions

solvation forcefs,, , adsorptionl’, inverse longitudinal cor- || pe different. Nevertheless, we expect the oveTaindh
relation Iengthgu_l, and specific hea€, occur along the vyagriation to be similar.

continuation to higheil of the pseudocoexistence line—see  Finally, we return to the implications of our results for
Fig. 5. There is strong variation with andh. For example, real confined fluids. A pure fluid confined by strongly ad-
for L=200 and a reduced temperature —0.0126, which  sorbing walls(favoring liquid should exhibit the same fea-
lies aboveT | , the minimum value of the solvation force is tures as thel=3 Ising film with h;=h,>0. Thus, capillary
about 300 times the Casimir value, correspondinghto condensation will manifest itself in the same way for fluids
=0,7=0. as for Ising magnets and this can be analyzed in the same
We confirmed that finite-size scaling is very well obeyedfashion provided one replacesn2(T) by p;—pg, the dif-
for fo, andI’ (see Figs. 2 and)3rovided one avoids the ference in coexisting densities of the bulk liquid and gas
low-temperature, condensation transition. Scaling is equallphases at temperatufeandh by u— us,(T), the chemical-
well obeyed forgu‘l, although we do not display its scaling potential difference. The critical scaling functions should
plots here. also be equivalent, although one must be cautious about the
The effect of the surface fields;=h,>0 is to break the choice of scaling variables since field mixing already occurs
h< —h Ising symmetry so that field mixing occurs. We find for a bulk liquid. For a binary liquid mixture that undergoes
thatC,, exhibits a very weakly rounded singularity on cross-bulk liquid-liquid phase separation, there is also the analogue
ing the pseudocoexistence line either by increabiatjfixed  of capillary condensatiof2,5,12. Depending on which spe-
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cies the walls favor, phase separation may be shifted to lowaanged, strongly attractive solvation force between two mac-
or higher compositions than in bulk. In such mixtures, weroscopic walls has important repercussions for the effective
would also expect to find a strongly attractive solvation forceforce between two largécolloidal) particles immersed in a
for temperatures betweeR,, and T, and for compositions near-critical fluid or binary liquid mixture. If one can ascer-
lying on the condensation side of the bulk critical composi-tain wheref,,, is most attractive, this should help determine
tion. Our study has shown that the behaviomefr critical ~ where aggregation or flocculation of a suspension of the
confined fluids is very rich; it is not just the behavior exactly large particles is potentially the strongest. There is a growing
at the bulk critical pointthe critical Casimir effegtwhich is literature on this topi¢13,18,4Q.
of interest. Thus, experiments that aim to measure the Ca-
simir force, e.g., by atomic force microscopy or surface force
apparatus, should also investigate thend r dependence of
fsoly - We are grateful to K. Binder for valuable correspondence
Similar remarks apply to measurements of other thermoand to J. M. J. van Leeuwen, A. Ciach, A. O. Parry, and P. J.
dynamic quantitie$39]. It is the scaling functions that pro- Upton for helpful comments and discussions. This work was
vide the most information—the same point has been made byartially funded by KBN Grant Nos. 2P03B10616 and
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